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Abstract

Hoffmann, M.R., 2003. Macroscopic Equations for Flow in Unsaturated Porous

Media. Dissertation, Wageningen University, The Netherlands.

This dissertation describes averaging of microscale flow equations to obtain

a consistent description of liquid flow in unsaturated porous media on the

macroscale. It introduces a new method of averaging the pressure term and a

unit cell model capable of describing unsaturated flow.

Starting from the description of liquid flow through individual pores, a macro-

scopic equation for flow of a liquid in a porous medium in the presence of a

gas is derived. The flow is directly influenced by phase interfaces, i.e. solid-

liquid or gas-liquid. By including these pore scale phenomena in a continuum

description of fluid transport in porous media, equations for liquid flow on the

macroscale are obtained.

The unit cell model is based on a simplified geometric representation of a

porous medium. It allows for the modeling of the important characteristics of

a porous medium for unsaturated flow.

Through the use of volume averaging and direct integration macroscale mo-

mentum and mass balance equations are derived from the microscale momen-

tum and mass balance equations, resulting in a novel form of the macroscale

pressure term. The macroscale flow of liquids in unsaturated porous media

can be written proportional to a driving force, which is proportional to the

difference of the inverse area averaged liquid pressures across an averaging vol-

ume. In principle the flow is driven by gradients in liquid pressure, but due to

the nonlinear coupling between capillary forces and liquid pressure the driving

force becomes nonlinear.

Two dynamic terms were derived by simplifying the flow dynamics in a porous

medium. They remain to be tested quantitatively and still have considerable

uncertainty concerning their exact form and/or magnitude.

Comparison of the newly proposed macroscale equations with the Buckingham-

Darcy equation shows that, using reasonable assumptions, the newly proposed

macroscale equations can be written in a form similar to the Buckingham-

Darcy equation. The newly proposed macroscale equations are compared to

an experiment and satisfactory agreement between experiment and calcula-

tions was observed.

keywords: momentum balance, nonlocal equations, porous media, upscaling,

unsaturated flow, volume averaging.
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Nomenclature

symbol description

a fraction characterising pore opening (–)

A area (m2)

A area in pore (corner) occupied by fluid (m2)

A(h) adsorptive component in AYL (eq. (2.19)) (m2/s2)

Ac liquid area in corner, perpendicular to flow (m2)

Ap pore area normal to flow (m2)

Asvl Hamacker constant, for quartz sand −1.9 ∗ 10−19 (J)

b factor characterising if pore is open (2), or closed (1) (–)

Bo Bond number, (eq. (2.11)) (–)

c1,2,3,4 factors defined by equations (5.46), (5.47), (5.48), (5.49) (–)

C factor depending on x, curvature (1/m); positive for an in-

terface concave outward from the liquid

Ca Capillary number, (eq. (2.37)) (–)

Cc capillary component in eq. (2.19) (m2/s2)

d microscopic characteristic length (RUC) (m)

f Fanning friction factor for fully developed flow (–)

f function describing geometric components, (eq. (4.40)) (–)

f function f(x, t) in eq. (3.12)

F conductance factor (–)

Fv conductance factor two-phase flow 1.7 (–)

g gravity acceleration (m/s2)

G Gibbs partial specific free energy (J)

h hydraulic head, film thickness in AYL equation (m)

H slit spacing, characteristic height of liquid in corner (m)

i index number (–)

j number of corners in RUC (–)

kD saturated hydraulic conductivity (m/s)

kr relative hydraulic conductivity (–)

Kn Knudsen number (–)

1



2 NOMENCLATURE

symbol description

lg flow length in RUC (m)

lp penetration length in Lucas-Washburn equation (eq. (2.4))

(m)

L characteristic length (m)

L length (m)

nl liquid saturation (–)

N macroscopic unit vector (–)

Nl characteristic liquid saturation (–)

p pressure (kg/ms2)

pc capillary pressure (kg/ms2)

plc critical pressure drainage for liquid (kg/ms2)

P generic Pressure (kg/ms2)

P wetted perimeter (m)

q volumetric flow rate (m3/s)

r radius of curvature of gas-liquid interface (m)

rc critical radius of curvature of gas-liquid interface during

drainage (m)

rh hydraulic radius (m)

ri critical radius of curvature of gas-liquid interface during imhi-

bition (m)

R1, R2 principal radii of curved surface (m)

Re Reynolds number (–)

S surface (m2)

s unit vector tangent to surface (–)

S saturation (m3/m3)

t time (s)

T characteristic time (s)

U characteristic velocity (m/s)

v velocity (m/s)

v velocity (m/s)

Vl volume of liquid in averaging volume (m3)

Vp volume of pores in averaging volume (m3)

Vs volume of solid in averaging volume (m3)

V0 volume of averaging volume (m3)

w velocity of surface (m/s)

x, y, z space coordinates (m)

α half opening angle of corner (rad)

γ surface (interfacial) tension at interface (kg/s2)

ε porosity (m3/m3), Vp/V0



NOMENCLATURE 3

symbol description

θ contact angle liquid - solid (rad)

µ dynamic viscosity (kg/ms)

ν unit normal vector on S (–)

ρ density (kg/m3)

τ proportionality factor in dynamic term (kg/ms)

τSsl cross-sectional average wall shear stress (kg/ms2)

Ψ generalized variable

〈 〉 average of quantity over volume of RUC, except when super-

script given
˙( ) deviation from mean

| | magnitude

subscripts:

0 boundary of RUC (averaged quantity, entrance)

1 boundary of RUC (averaged quantity, exit)

D as subscript for specific discharge, also “Darcy” velocity

a air

c mean inside corner

d dynamic

f fluid (gas or liquid)

g gas

l liquid

m mean

p mean inside pore

s solid, static

tot total

w water

Vector notation follows Bird et al. (1960).
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1 Introduction

This dissertation describes averaging of the microscale flow equations to obtain

a consistent description of liquid flow in unsaturated porous media on the

macroscale. It introduces a new method of averaging the pressure term and a

unit cell model capable of describing unsaturated flow.

1.1 What is it about?

This dissertation is about unsaturated flow in porous media. More specifically

it is about mathematical modeling of two-phase flow through rigid porous

media. The two phases considered are a wetting liquid and a gas. In practice

one can think of a sandy soil partially saturated with water, partially with

air. Strictly speaking, the flow of the liquid phase is treated as single-phase

flow in the presence of an inviscid gas phase. However, the gas phase directly

influences the liquid flow through surface forces and the resulting flow is called

two-phase flow or unsaturated flow in this dissertation.

Starting from the description of fluid flow through individual pores, an equa-

tion for flow of a liquid in a porous medium in the presence of a gas is derived.

This flow is directly influenced by phase interfaces e.g. solid-liquid or gas-liquid.

By explicitly including these pore scale phenomena in a continuum description

of fluid transport in porous media, a consistent theoretical description of fluid

flow on the macroscale is obtained.

1.2 Problem Description

Groundwater flow, flow in lungs, flow inside the catalytic converter of a car

and wind blowing through a forest are all examples of flow in porous media.

5



6 CHAPTER 1. INTRODUCTION

Examples where two-phase flow plays an important role are drainage and irri-

gation of agricultural lands, groundwater pollution, nuclear waste storage, oil

and gas winning, and the drying of food materials.

Current equations describing fluid transport in porous media are based on

(semi)empirical equations derived in the 19th century (Darcy, 1856) for single-

phase flow and in the 20th century for multi-phase flow (Buckingham, 1907;

Washburn, 1921; Richards, 1931; Buckley and Leverett, 1942). The current

standard equations used in soil physics are called the Buckingham-Darcy equa-

tion and Richards equation. These equations try to describe the “average”

behavior of a mixture of a porous medium and one or more fluids. They have

since then been put on a firm basis by theoretical investigations of Hubbert

(1956), Anderson and Jackson (1967), Whitaker (1966, 1969), Slattery (1967,

1969), and Gray and Hassanizadeh (1991a). The theoretical work by Whitaker

(1977) confirmed the general nature of Richards equation, if considerable as-

sumptions are made. Theoretical work of Gray and Hassanizadeh (1991a),

and experimental work of Alemán et al. (1989) and Grant and Salehzadeh

(1996) showed that there is still a considerable gap between the theory and

experiments, and Richards equation. The main problems lie in the nature of

the average capillary or liquid pressure and the interplay between the param-

eterization of constitutive relations and the average liquid pressure. These

difficulties are in part due to the averaged nature of Richards equation. Av-

eraging smoothes discontinuities, leading to smoothed macroscale equations.

Another difficulty arises when Richards equation is applied in practice. In

order to find a solution, constitutive relations are needed between water con-

tent and pressure head, and relative hydraulic conductivity and water content.

At very low water contents, often unrealistic solutions are obtained due to

the form of the constitutive relations used (Fuentes et al., 1992). Due to the

nonlinear character of Richard’s equation only a limited number of analytical

solutions are known. Usually one resorts to numerical solution techniques,

which normally involve discretisation and integration. In mathematical terms

Richards equation is a partial differential equation that is defined with local

point support, but in physical terms Richards equation is seen as a description

on the cm scale. These interpretations somewhat conflict when discretisa-

tion is applied (Nitsche and Brenner, 1989, p. 240). This is due to the fact

that when discretisation is applied, always interpolation is needed. In practice

this interpolation is different from the assumptions made in deriving Richards

equation. For example the constitutive relations commonly used are based on

the assumption of gradient independence.

At the end of the last millennium Gray and Hassanizadeh (1991a), and Has-
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sanizadeh and Gray (1997, 1993) proposed more general, theoretically obtained

equations to describe multi-phase flow in porous media. These equations were

derived by volume averaging and thermodynamics. Volume averaging has

been used in the last decennia, mostly for single-phase flow in porous media,

although examples of multi-phase flow are described in Bear and Bensabat

(1989) and Hassanizadeh and Gray (1997). Despite enormous theoretical de-

velopments, practical applications of volume averaging have been limited due

to the so called closure problem. A closure problem, or closure, refers to a step

in volume averaging where terms containing microscale variables are expressed

in terms containing macroscale variables. Different possibilities exist to solve

this closure problem: numerical methods (Quintard and Whitaker, 1990), ap-

proximations based on empirical equations (Whitaker, 1980) and analytical so-

lutions for Representative Unit Cells (RUC’s) (du Plessis and Masliyah, 1988;

du Plessis and Diedericks, 1997). The difficulty in applying the volume aver-

aging theory lies in the development of a practical solvable closure problem.

Volume averaging starts with a description of fluid flow on the pore or mi-

croscale. Through the averaging process we replace the microscale variables by

macroscale variables, for example we change from the description of the actual

liquid configuration in pore to the average liquid content on the macroscale.

The term scale refers to a ”typical”measurement scale. A spatial scale is a

representative length unit through which we want to describe flow. The mag-

nitude is usually the diameter of an averaging volume. On the microscale or

pore-scale this would be tenth of mm, on the macroscale or continuum scale

cm’s. It is also possible that the term scale refers to a typical time unit which

captures the characteristics of the flow.

1.3 Relevance

Flow in porous media is difficult to be accurately modeled quantitatively.

Richards equation can give good results, but needs constitutive relations.

These are usually empirically based and require extensive calibration (van

Genuchten, 1980; Pullan, 1990). The parameters needed in the calibration

are amongst others: capillary pressure and pressure gradient, volumetric flow,

liquid content, irreducible liquid content, and temperature (Bachmann et al.,

2002). In practice it is usually too demanding to measure all these parameters.

In the model introduced in this dissertation no constitutive relations per se are

used, but a description of flow in terms of physical parameters of the porous
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medium and the fluids. These parameters are amongst others: viscosity, poros-

ity, and interfacial tensions. The concept of a Representative Unit Cell (RUC)

implicitly replaces part of the constitutive relations, because it defines the ge-

ometry of the pore space. The newly derived mathematical model can be used

in drainage modeling and in the following applications where the Buckingham-

Darcy or Richards equation are not directly applicable, e.g. gravity free flow

of fluids in porous media in space for plant growth (Scovazzo et al., 2001),

(inverse) determination of structural porous media properties from fluid flow

measurements (Montillet et al., 1992; Roberts and Knackstedt, 1996). Note

that these properties depend on the specific porous medium model chosen.

In their present form the newly derived equations are not suited for infiltration

models, for the description of fingering flow, for flow of non-Newtonian fluids,

and for flow with drag along the fluid-fluid interfaces. The model can be

extended to include additional processes like vapor diffusion, heat transport,

and electrical conductivity, by directly averaging these processes with the aid

of the RUC approach.

1.4 Objectives and Approach

The objective of this dissertation is to develop a macroscopic model for the

movement of a wetting liquid in a rigid porous medium in the presence of a gas

phase. This dissertation uses the method of spatial averaging to change scales

in the description of flow in porous media. The starting point is a description

of the fluid flow on the pore- or microscale. By coarsening the description of

the microscale, solid and fluid phases start to form a continuum. This new

imaginary continuum has all the properties of the small scale system on ”aver-

age”. The averaged properties are derived through a closure method based on

the Representative Unit Cell (RUC) concept developed by professor J. P. du

Plessis (du Plessis and Masliyah, 1988). It is extended to allow unsaturated

flow, and phase interfaces are explicitly included.

By making different choices in the volume averaging procedure, a different

form of the equations than the traditional one (Whitaker, 1986b) is obtained.

The work presented in this dissertation introduces:

1. A new way of handling the liquid pressure term.

2. A unit cell model for unsaturated flow.
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1.5 Outline of Dissertation

Chapter 2 gives an overview of the historical development of the study of flow

and transport in porous media. Chapter 3 describes the method of spatial

averaging as used in this dissertation, and states the basic equations, assump-

tions and conditions. In chapter 4 a geometric model for a porous medium is

developed together with the pore scale flow equations. The results of chapters

3 and 4 are used in chapter 5 to derive averaged equations that describe un-

saturated flow in porous media. A comparison of the newly derived equations

with the Buckingham-Darcy equation and an experiment is given in chapter 6.

Chapter 7 contains an overall discussion, recommendations and conclusions.
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2 Overview and Review

This chapter provides an overview and gives a historical perspective of the

study of flow in porous media. Single-phase and two-phase flow at the pore

scale are described, basic equations are introduced, and concepts of the differ-

ent flow mechanisms are explained. Thereafter different methods for upscaling

to a continuum description of flow in porous media are introduced and the

basics of volume averaging are explained.

2.1 Introduction

Flow in porous media plays an important role in many areas of science and

engineering. Examples of the application of porous media flow phenomena are

as diverse as flow in human lungs or flow due to solidification in the mushy

zone of liquid metals. Table 2.1 lists other areas where flow in porous media

plays an important role. The description of the behavior of fluids in porous

media is based on knowledge gained in studying these fluids in pure form. Flow

and transport phenomena are described analogous to the movement of pure

fluids without the presence of a porous medium. The presence of a permeable

solid influences these phenomena significantly. The individual description of

the movement of the fluid phases and their interaction with the solid phase

is modeled by an upscaled porous media flow equation. The concept of up-

scaling from small to large scales is widely used in physics. Statistical physics

translates the description of individual molecules into a continuum description

of different phases, which in turn is translated by volume averaging into a

continuum porous medium description.

2.1.1 Definition of a porous medium

The definition of a porous medium used in this dissertation is based on the

objective of describing flow in porous media. A porous medium is a heteroge-

11



12 CHAPTER 2. OVERVIEW AND REVIEW

Hydrology Groundwater flow, salt water intrusion

into coastal aquifers, soil remediation

Agriculture Irrigation, drainage, contaminant

movement in soils, soil-less cultures

Geology Petroleum reservoir engineering, geo-

thermal energy

Chemical engineering Packed bed rectors, filtration, fuel cells,

drying of granular materials

Mechanical engineering Solar cell design, wicked heat pipes,

heat exchangers, porous gas burners

Industrial materials Rubber foam, glass fiber mats, con-

crete, brick manufacturing

Table 2.1: Areas where flow in porous media plays an important role.

neous system consisting of a rigid and stationary solid matrix and fluid filled

voids. The solid matrix or phase is always continuous and fully connected.

A phase is considered a homogeneous portion of a system, which is separated

from other such portions by a definitive boundary, called an interface. The

size of the voids or pores is large enough such that the contained fluids can be

treated as a continuum. On the other hand, they are small enough that the

interface between different fluids is not significantly affected by gravity.

The topology of the solid phase determines if the porous medium is permeable,

i.e. if fluid can flow through it, and the geometry determines the resistance

to flown and therefore the permeability. The most important influence of

the geometry on the permeability is through the interfacial or surface area

between the solid phase and the fluid phase. The topology and geometry also

determine if a porous medium is isotropic, i.e. all parameters are independent

of orientation, or anisotropic if the parameters depend on orientation. In multi-

phase flow the geometry and surface characteristics of the solid phase determine

the fluid distribution in the pores, as does the interaction between the fluids.

A porous medium is homogeneous if its average properties are independent

of location, and heterogeneous if they depend on location. An example of a

porous medium is sand. Sand is an unconsolidated porous medium, and the

grains have predominantly point contact. Because of the irregular and angular

nature of sand grains, many wedge-like crevices are present. An important

quantitative aspect is the surface area of the sand grains exposed to the fluid.

It determines the amount of water which can be held by capillary forces against

the action of gravity and influences the degree of permeability.
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The fluid phase

The fluid phase occupying the voids can be heterogeneous in itself, consist-

ing of any number of miscible or immiscible fluids. If a specific fluid phase is

connected, continuous flow is possible. If the specific fluid phase is not con-

nected, it can still have bulk movement in ganglia or drops. For single-phase

flow the movement of a Newtonian fluid is described. For two-phase immisci-

ble flow, a viscous Newtonian wetting liquid together with a non-viscous gas

are described. In practice these would be water and air. Other fluid phase

compositions are not considered in this dissertation.

2.1.2 History

One of the first successful attempts to describe flow through porous media was

by the French engineer Henry Darcy (Darcy, 1856). He was a civil engineer

responsible for the drinking water supply of the city of Dijon. The drinking

water was cleaned by percolation through sand columns. Darcy wanted to

know the relation between specific discharge and head gradient in the sand

columns. He found the following relation, commonly called Darcy’s law, by

experiment and written in modern notation:

vD = −kD
∆h

∆x
(2.1)

with vD the specific discharge, kD the hydraulic conductivity, x a space coor-

dinate and h the hydraulic head. This equation has formed the basis for nearly

all models describing the creeping flow of fluids through porous media up to

the end of the 1960’s, when it was also derived theoretically (Hubbert, 1956)

and alternative models were proposed (Bear and Bachmat, 1990, p. 122, 161).

In Darcy’s law, the head drop is entirely due to viscous dissipation, induced by

the solid-liquid interface. This implies that Darcy’s law becomes invalid when

inertial effects play a role, or when the solid surface area (porosity) becomes

very small (large) (Carman, 1956).

A major contribution to the description of flow in unsaturated soils was made

by Buckingham (1907). He introduced a flux law for the movement of water

in unsaturated soils, which is a modification of Darcy’s law:

vD = −kDkr(S)
∂h

∂x
(2.2)
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with S = S(h) the liquid saturation, and kr(S) the relative hydraulic conduc-

tivity.

Richards (1931) combined the Buckingham flux law together with the mass

balance equation (Richards equation):

∂εS(h)

∂t
= −∇ · [kDkr(S)∇h] (2.3)

with ε the porosity. The above two equations form the basis for most of the

current studies of flow in unsaturated soils. In order to solve these equations

constitutive relations between kr and S, and S and h are necessary. The con-

stitutive relations in Richards equation are commonly described by empirical

parametric formulas, for example the formulas of Leverett (1941) and Corey

(1994) from petroleum engineering, and the formulas of van Genuchten (1980)

and Pullan (1990) from agricultural engineering. They contain fitting param-

eters which are calibrated by experiments.

Lucas (1918) and Washburn (1921) described the kinetics of wetting in capil-

laries by the following equation:

v(t) =
∂

∂t
lp(t) =

rγgl cos θ

4µl lp(t)
(2.4)

with v(t) the penetration velocity , r the radius of the capillary, γgl the in-

terfacial tension between gas and liquid, θ the contact angle between liquid

and solid, µl the liquid viscosity, and lp(t) the penetration length of the liquid.

This equation can be directly integrated, yielding:

lp(t)
2 =

γglr cos θ

2µl
t (2.5)

It describes the translation of the gas-liquid interface as it penetrates a cap-

illary porous solid. Washburn (1921) applied this equation to charcoal as an

example of a porous medium. It is one of the few equations which explicitly

takes into account the kinetics of the wetting fluid movement. In this disser-

tation the kinetics of wetting fluid movement are taken into account in the

closure modeling.

In 1956 Miller and Miller were the first researchers to describe explicitly the

different force balances at micro- and macroscales in a porous medium. They

derived similarity scaling laws based on capillary forces (surface tension) and
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characteristic length scales. Morrow (1970) extended the description of two-

phase flow by thermodynamic considerations, i.e. by taking into account pore

level gas-fluid-solid configurations and interfacial energies.

This short account of the historical developments shows a continuous improve-

ment made in the modeling of flow through porous media. In the next section

the different flow mechanisms are explained and more recent developments

included. Additional background information can be found in the excellent

reviews of Hilfer (1996), and Adler and Brenner (1988).

2.2 Flow at the Pore Scale

Flow at the pore scale is governed by the specific geometry of the solid phase,

which determines the boundary with the fluid phases. This boundary exerts

a viscous drag on a moving fluid. If multiple fluid phases are present, their

interaction gives rise to a phenomenon called capillarity. Capillarity is a man-

ifestation of the interaction between the fluids and the solid, and the cohesion

in the fluids, called surface tension. This overview mainly deals with quasi

steady flow at the pore scale, which can still give rise to unsteady phenomena

at the continuum scale.

2.2.1 Single-phase flow

In single-phase flow, one fluid phase is present in the voids of the porous

medium. When the fluid starts moving, friction develops at the fluid solid

interface and inside the fluid. For an incompressible Newtonian fluid with no

other body forces than gravity, motion is described by the momentum balance

equations (Navier-Stokes equations) (Bird et al., 1960; Fourie, 2000):

ρ

(

∂v

∂t
+∇ · (vv)

)

= −∇p+ µ∇2v + ρg (2.6)

with ρ the density, v the velocity, t time, p the pressure, µ the dynamic vis-

cosity, and g the gravitational acceleration. Together with the mass balance

equation (Bird et al., 1960):

∇ · (ρv) = 0 (2.7)
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which for incompressible flow becomes:

∇ · v = 0 (2.8)

a consistent set of equations with variables p and v is obtained. This system

of equations describes the temporal and spatial evolution of the fluid move-

ment. It is still under-determined without initial and boundary conditions.

Initial conditions are the starting configuration of the fluid at t = t0, and the

boundary conditions describe the space-time boundaries of the flow domain.

Assuming steady state flow, the boundary conditions reduce to a specification

of the interfacial conditions at the fluid-solid interface and the fluid entrances

and exits. The boundary condition at the fluid-solid interface is:

B.C. v(x, t) = 0 at fluid-solid interface (2.9)

The above boundary condition is called a no-slip condition. It is appropriate

if the Knudsen number Kn = d/λ0 > 10, with λ0 the molecular mean free

path length and d a characteristic distance (Helmig, 1997, p. 86). For low

values of the Reynolds number, i.e. slow viscous flow at low Reynolds numbers,

equations (2.6) reduce to (Hilfer and Øren, 1996):

− ρg +∇p = µ∇2v (2.10)

These equations are called the Stokes equations and model slow viscous domi-

nated flow in the pores of a porous medium. It is important to recognize that

the absolute pressure level p plays no role in equations (2.6) and (2.10) because

of incompressibility. Only differences in pressure affect the fluid flow. This im-

plies that flow at a high pressure level in deep groundwater is exactly the

same than flow at an atmospheric pressure level, if the same pressure gradient

applies.

2.2.2 Two-phase flow

Two-phase flow in porous media is in effect flow in a three-phase system:

the solid phase and two fluid phases. Moving interfaces in two-phase flow

will give rise to effects not observed in single-phase flow. The interaction

between the different fluids and the solid surface at the pore scale determines

the fluid distribution and behavior (Buckingham, 1907). If the cohesive forces

in the fluids are larger than the adhesive forces between the fluids, they form
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a sharp interface and are immiscible (Dracos, 1991). An example are water

and air (possibly including water vapor), or oil and water. Miscible fluids, for

example, are alcohol and water. The concept of miscibility depends on the

thermodynamic state of the fluids. The examples given here are for standard

conditions in soils 1.

At the pore, scale surface forces usually play a much more important role than

gravity (through the density of the fluids). For example, for air and water, the

Bond number related to the density difference is:

Bo =
gravitational force

surface tension force
=

(ρw − ρa)gL
2

γwa
≈ 10−2 (2.11)

with γwa ≈ 10−2 kg/s2 the interfacial tension between water and air, L ≈ 10−4

m the pore characteristic length scale, and ρw ≈ 103 kg/m3, ρa ≈ 1 kg/m3,

the densities of water and air respectively. Gravitational and surface tension

forces become comparable in magnitude in pores of approximately cm size.

Due to the strong influence of surface forces, the fluid distribution is directly

influenced by the fluid volume through the fluid surface area.

Surface Tension

The geometry of the interface between two fluids is determined by interfacial

(surface) tension. This tension is defined as the amount of energy that is

required to create a unit area of surface. It can also be seen as a force per unit

length acting along an arbitrary line on the interface. The interfacial tension

acts tangentially to the interface and minimizes the amount of interface, if no

other forces prevent this (Pellicer et al., 1995). It is formally defined as the

change of Helmholtz free energy per change in unit area Ai of the interface at

constant temperature, volume and chemical composition (Sherwood, 1971). In

this dissertation the interfacial tension is treated as constant. The interfacial

tension gives rise to a difference in pressure across the interface at equilibrium

(Pellicer et al., 1995):

∆p = pg − pl = γgl
dAi

dVl
(2.12)

with pg the gas phase pressure, pl the liquid phase pressure and Vl the liquid

volume. It can also be expressed as (Young-Laplace equation) (de Gennes,

1Air phase at atmospheric pressure, temperature ≈ 10− 20◦C
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1985):

∆p = γgl

(

1

R1
+

1

R2

)

= γglC (2.13)

with R1 and R2 the principal radii of the curved surface and C the curvature

of the interface, which is positive for an interface concave outward from the

liquid.

Wettability

When three phases are in contact with each other, they are separated by

interfaces between each two phases and by contact lines where the three phases

meet. If one of the surfaces is static (the solid surface) we can write (Pellicer

et al., 1995):

cos θ =
γsg − γsl

γgl
(2.14)

which is called Young’s equation and defines the contact angle θ. The smaller

the contact angle, the larger the area of the solid surface wetted by a constant

volume of fluid. If the contact angle goes to zero, the wetting fluid will tend

to cover the surface of the solid completely. In soils most surfaces are rough,

and an apparent contact angle develops (de Gennes, 1985), and θ is used

to denote this apparent contact angle. A moving liquid will exhibit contact

angle hysteresis, depending on direction and velocity with respect to the solid

surface (de Gennes, 1985). Receding contact angles are usually smaller than

advancing contact angles. If the solid surface is rough, jumps of the contact

line can occur, causing sudden interface stretching and contraction. This is

due to the ”pinning” of the contact line (de Gennes, 1985). The interaction

between the wetting state and the fluid-fluid interfacial tension results in a

specific fluid configuration inside a pore.

Capillary Pressure

Capillary pressure is a term with different usage. Sometimes it is strictly

related to interfacial tension (Mason and Morrow, 1991), sometimes it denotes

a general potential driving transport processes (Nitao and Bear, 1996). In soil

science water is usually assumed to be the wetting fluid and at lower pressure
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than atmospheric pressure. The standard definition for capillary pressure in

soil science is:

pc = pnon wetting − pwetting = pg − pl (2.15)

The non-wetting pressure is chosen as reference level and arbitrarily set to

zero:

pnon wetting = 0 (2.16)

which implies that:

pc = −pl (2.17)

and, using equation (2.13):

pl = −γgl(
1

R1
+

1

R2
) (2.18)

The above definition of a pressure reference level implies that pl can become

negative. This does not imply that absolute negative pressures exist, but that

pl is negative compared to pg = 0. In soils, the liquid pressure at low water

contents is usually measured by comparing the soil to some other material

at a given potential (Koorevaar et al., 1983). In effect these “capillary pres-

sure” measurements are thus potential measurements. These are often highly

negative, below the bubbling pressure of pure water. The picture of capillary

pressure as being a water pressure is highly simplified and not justifiable on

physical grounds (Gray and Hassanizadeh, 1991a). It is possible to use pc as a

measure of the energy state of soil water, and so include effects of electrostatic

forces and other not directly specified influences (Nitao and Bear, 1996). If the

radius of the gas-liquid interface is calculated by using equation (2.13) from the

average ∆p on the macroscale, the result is highly questionable, if this radius is

to represent the true radius of the gas-liquid interface (Gray and Hassanizadeh,

1991a). In order to overcome the difficulties related to the bubbling pressure

of water, pc can be defined as composed of a capillary component Cc(C) and

an adsorptive component A(h). The adsorptive component accounts for water

held by the solid porous medium matrix, usually in thin films, covering the

solid phase. The geometry of these films follows the outer surface of the solid

phase, and as such these films can be concave or convex. The Young-Laplace

equation does not apply to these films. Written in terms of constant partial
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specific Gibbs free energy, G, the Augmented Young-Laplace equation (AYL),

which extends equation (2.13) by considering the gas-liquid interface as a liq-

uid vapor interface and including adsorption effects (Nitao and Bear, 1996;

Tuller et al., 1999), can be written as:

G = A(h) + Cc(C) (2.19)

or in terms of capillary pressure:

pc = ρl [A(h) + Cc(C)] (2.20)

where h is the thickness of the adsorbed film. Cc(C) can be expressed as

(Tuller et al., 1999):

Cc(C) =
γgl
ρl

(
1

R1
+

1

R2
) cos θ (2.21)

and A(h) as:

A(h) =
Asvl

6πρlh3
(2.22)

with Asvl the Hamacker constant, a material property, and h the thickness of

the liquid film. In principle the Hamacker constant is “constant” only for flat

surfaces, but here it is used for order of magnitude estimation only. It can

then be treated as a constant even if the surfaces are not perfectly flat. If the

dimensionless ratio of the terms on the left hand side of equation (2.20) is of

order 1, they are equally important. This ratio can be expressed as:

A(h)

Cc(C)
=

adsorption term

capillary term

=
Asvl

6πh3γgl(
1
R1

+ 1
R2

) cos θ
(2.23)

Assuming that limR2→∞, i.e. the capillary meniscus is curved only due to R1,

and θ = 0. In that case the terms are equally important if:

1 ≈ AsvlR1
6πh3γgl

h ≈ (10−19 R1)
1/3 m2/3 (2.24)
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Figure 2.1: Schematic picture of adsorbed film and capillary menis-

cus in flat wedge (not to scale), symbols explained in text, gray area

denotes liquid.

with γgl ≈ 0.07 kg/s2, Asvl ≈ 2 ∗ 10−19 J and m2/3 accounting for the units

of the constants. For smaller values of h the adsorption term becomes more

important. Figure 2.1 shows the geometry of the capillary meniscus and the

adsorbed film inside a wedge. In thin slits the maximum thickness of the

films before coalescence occurs is h = H/3 (Tuller et al., 1999). The following

geometrical relation holds, with H the spacing of the solid phase:

2R1 + 2h = H

2R1 + 2h = 3h

R1 =
1

2
h (2.25)

Combining equations (2.24) and (2.25) gives:

R1 ≈ 1

2
(10−19 R1)

1/3 m2/3

R1 ≈ 10−10 m (2.26)

and for smaller values of R1 the adsorption term would be the important one.

If the radius of the air water interface were so small, this would correspond

to a pressure difference across the interface of about −7 ∗ 108 Pa, which is

about the (negative) pressure of a water column of 7 km height, or equiva-

lent pF 6.8. At these high pF values, the porous medium is essentially dry

and practically no water movement occurs in the liquid phase anymore. Once

pl becomes very low, the liquid films covering the solid surface become ex-

tremely thin. In these thin films viscosity and density of the liquid can not be
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assumed constant any more (Gray and Hassanizadeh, 1991a; Tuller and Or,

2001, p. 261). The liquid viscosity and density then depend on the distance to

the solid surface. This plays a role only in films thinner than 10−8 m (Tuller

and Or, 2001). These effects can play an important role in fine textured soils,

but are relative unimportant in sands (Tuller and Or, 2001) with their specific

surface areas in the order of 104 m2/m3 (Hilfer, 1996). The amount of water

held by adsorptive forces in sands at the above limit can be easily estimated

as 10−10 m ∗ 104m2/m3 ≈ 10−6m3/m3, which is indeed negligible for most

practical purposes. The same conclusions can be drawn from capillary rise

and drainage, and from flow in capillary groove experiments. Hence in these

cases capillary bound water is more important than water bound by adsorptive

forces (Lago and Araujo, 2001; Romero and Yost, 1996).

In conclusion, the assumption is justified that most water at low capillary

pressure is held by capillary forces in sandy soils, and that these capillary

forces are the major phenomena in determining the flow of liquid, in contrast

to adsorptive forces that play only a minor role. From now on the adsorptive

forces as such are not longer directly considered in this dissertation and it is

assumed that practically all water is held by capillary forces.

In the last few paragraphs the contribution of the vapor phase on the liquid

equilibrium was not considered (as is in the reminder of this dissertation). It

should be kept in mind that mass transport through the vapor phase in very

dry soils is more important than liquid flow. This subject would warrant at

least another few years of research. However the movement of liquid in very

dry soils is not further considered here.

Flow at the Pore Scale

The equations describing two-phase flow at the pore scale are very similar

to the single-phase flow equations. The major difference is that two fluids

are present and hence two momentum and mass balances need to be solved.

Additionally the interfacial conditions between the two fluid phases need to be

specified. The momentum balances (eqs. (2.6)) become:

ρg

(

∂vg
∂t

+∇ · (vgvg)
)

= −∇pg + µg∇2vg + ρgg (2.27)

ρl

(

∂vl
∂t

+∇ · (vlvl)
)

= −∇pl + µl∇2vl + ρlg (2.28)
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with subscript g for the gas phase and l for the liquid phase. They are aug-

mented by the mass balance equations:

∇ · (ρgvg) = 0 (2.29)

∇ · (ρlvl) = 0 (2.30)

with boundary conditions:

B.C.1 vg = 0 at gas-solid interface (2.31)

B.C.2 vl = 0 at solid-liquid interface (2.32)

B.C.3 vg = vl at gas-liquid interface (2.33)

B.C.4 (pl − pg)(x, t) = −γglC(x, t) at gas-liquid interface (2.34)

B.C.1 and B.C.2 are the standard no-slip boundary conditions for the fluid-

solid interface. B.C.3 states that there is no mass transfer across the gas-liquid

interface. B.C.4 describes the pressure jump condition across the gas-liquid

interface. This expression is a simplified form of the full stress balance at

the gas-liquid interface (Hilfer, 1996). If the dynamics of the interface need

to be taken into account, explicit balance equations can be derived (Gray and

Hassanizadeh, 1991b). Additionally the boundary conditions at the entries and

exits of the fluid domain need to be described. The above equations contain a

self contradiction: B.C.1 and B.C.2 state no-slip at the solid interface. If the

contact line between gas, liquid and solid moves, it must slip along the solid

interface. This contradiction is not important in the following description of

two-phase flow (Hilfer, 1996; Dussan V., 1979; de Gennes, 1985). Here the

assumption is made that a thin, quasi stationary liquid film covers the solid

at all times, and so the singularity at the contact line is removed.

It is a common assumption that the gas phase has atmospheric pressure every-

where and that the influence of gravity on the gas phase is negligible (Koore-

vaar et al., 1983). This implies that all gradients in the gas phase vanish:

∇pg = 0 (2.35)

A second common assumption is that the gas phase has “infinite” mobility,

i.e. µg = 0 (Bear, 1988). This implies that there is no viscous coupling at the

gas-liquid interface (and hence the simple form of B.C.4). In any case, due to

the high viscosity contrast of water and air (µw ≈ 1 × 10−3, µa ≈ 2 × 10−5),
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viscous coupling only plays a role in high-speed flows. Capillary equilibrium,

i.e. quasi static capillary forces can be assumed if (Dracos, 1991):

∣

∣

∣

∣

(µl − µg)U

γgl

∣

∣

∣

∣

¿ 1 (2.36)

with U a characteristic velocity. The above term is a modified capillary num-

ber (Ca), related to the viscosity contrast. The common definition for Ca is

(Probstein, 1989):

Ca =
viscous force

surface tension force
=

µU

γ
(2.37)

With the given assumptions, equations (2.27) essentially vanish, and equations

(2.28) can be used without direct reference to equation (2.27). Using dimen-

sional analysis and scaling arguments similar to single-phase flow (Hilfer and

Øren, 1996), equations (2.28) reduce to:

− ρlg +∇pl = µl∇2vl (2.38)

whereby slow, viscous dominated low Reynolds number flow is assumed. As

with single-phase flow this can be described as purely viscous, creeping flow.

When the volume of liquid becomes small, it will tend to cover the solid with

thin films. Because the flow resistance in thin films scales with approximately

the film thickness to the power three (Bird et al., 1960), liquid movement

becomes slower and slower as the thickness approaches zero. There are sev-

eral examples in the literature which solve two-phase flow at the pore scale.

Payatakes et al. (1973) and Sáez et al. (1986) use a periodically constricted

pore model. Their model allows capillary effects to play only a small role,

because their model is essentially two-dimensional. As they use the model also

for high-speed flows, where capillarity is of less importance, their assumptions

are reasonable. Ruan and Illangasekare (1999) developed a liquid flow model

applicable to sandy soils based on a sheet flow model. Their model is based

on quasi-spherical unit cells and allows a variety of flow phenomena to be

modeled. A drawback of their approach is that no closed-form relationship for

saturation-capillary pressure dependence is given. Tuller (Tuller and Or, 2001)

used a combination of polygonal pores and slits to describe flow together with

capillary and adsorption phenomena. The great advantage of their model is

the accurate representation of adsorption, but the flow model is quite primitive

in terms of the geometrical representation of the pore space. In effect their

model is a two-dimensional model.
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2.3 Upscaling to the Continuum Scale

The change of scale from the pore or microscale to the continuum or macroscale

changes the form of the flow equations. For single-phase and multi-phase flow

different techniques and assumptions are used that lead to different forms of

the governing equations. An important quality of the upscaled equations is

whether they are local or nonlocal (Cushman, 1990a). Local equations have a

mathematical structure similar to the Navier-Stokes equations (eqs. 2.6) and

depend on local point values only. Nonlocal equations also depend on long

range interactions. Most theories describing flow in porous media use local

equations. Notable exceptions are so called ”pressure drop” correlations used

in chemical engineering (Brodkey and Hershey, 1988), and the original form of

Darcy’s law (Darcy, 1856). These equations are nonlocal, because they depend

on an external pressure drop directly. Central to the local versus nonlocal

distinction is the definition of so called point values. The definition of what a

mathematical point and a physical point in the upscaled equations is, is given

by Nitsche and Brenner (1989, p. 240): ”a ’point’ at the microscale does not

strictly represent a mathematical point; instead, it has meaning only beyond

a much smaller intermediate size (characteristic of the mesoscale), which is

nevertheless so much greater than the pore scale that the macroscopic ’point’

contains an appreciable, indeed representative, portion of the microstructure”.

The ’volume’ associated with the macroscopic point is called a Representative

Elementary Volume (REV).

The term upscaling is used in many contexts. Here it is used to denote an

operation that describes a spatial transformation from the pore scale to the

continuum scale or macroscale . At the continuum scale new parameters enter

the flow equations and replace small-scale descriptions. On the macroscale the

detailed description of interfaces and spatial distributions disappears and is

replaced by macroscale parameters. Going from the pore to the continuum

scale results in a loss of information (Cushman, 1990b). This lost information

is commonly replaced by implicit (du Plessis and Masliyah, 1988; du Plessis,

1997)) or explicit constitutive relations (Bear and Bachmat, 1990). There are

different methods for the upscaling process: heuristic and empirically based

methods, stochastic methods, methods based on homogenization, mixture the-

ories and space averaging theories.

These upscaling methods have the following definitions in common. Porosity

is defined as:

ε =
Vp
V0

(2.39)
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with Vp the pore volume and V0 the averaging volume. The liquid saturation

nl is defined as:

nl =
Vl
Vp

(2.40)

with Vl the volume of the liquid phase in V0. The following constraints apply:

Vs + Vp = V0 (2.41)

Vl + Vg = Vp (2.42)

nl + ng = 1 (2.43)

with the subscript s indicating the solid phase and Vs the volume of the solid

phase in V0.
In the following sections the main upscaling approaches are listed.

Heuristics and empirical descriptions, and stochastic methods

Heuristics and empirical descriptions are based on the direct description of

experiments (van Genuchten, 1980), or an extension of Darcy’s equation to

two-phase flow (Richards, 1931). Modern methods use pore network modeling

(Hassanizadeh et al., 2001) to obtain upscaled flow equations and/or parame-

ters for constitutive relations, based on physical or computer models.

Stochastic upscaling methods are not often used in flow in porous media. Their

main application area lies in transport theories, e.g. solute transport (Cush-

man, 1990a).

Homogenization

A third class of upscaling techniques is based on the method of homogenization.

”A more descriptive name of this method is ’an asymptotic method for the

study of periodic media’.” (Ene, 1990). Homogenization deals with multi-

scale systems, i.e. systems in which the different scales are clearly separated.

It is based on the study of periodic solutions of partial differential equations

and the asymptotic behavior of these as the period tends to zero. The method

is restricted to problems with periodic boundary conditions and structures.

Due to these restrictions the method cannot be applied directly to multi-phase

flow (Pride and Flekkøy, 1999), although attempts have been made (Hornung,

1997).
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Mixture theories

Mixture theories are based on ”mixing” of the description of different phases

in a multi-phase medium. They were applied in the context of flow in porous

media by Bowen (1984) and Wang and Beckermann (1993). Mixture theories

result in simpler upscaled equations than the homogenization method or spa-

tial averaging, because they do not describe the movement of the different fluid

phases in porous media separately, but lumped (Bowen, 1984). A disadvan-

tage is that the information regarding a specific phase is lost and that certain

pore level phenomena (phase discontinuities, counter-current flow) can not be

described easily.

2.3.1 Space averaging theories

Space averaging theories are widely used in the upscaling of processes in porous

media (Nitsche and Brenner, 1989). Space averaging is called volume averaging

if the averaging is carried out over a three-dimensional volume. This volume

is called a Representative Elementary Volume (REV). The basis of volume

averaging in porous media was derived by Whitaker (1966, 1967, 1969), An-

derson and Jackson (1967), Slattery (1967, 1969), Gray (1975), and Blake

and Garg (1976). Later contributions and extensions were made by: Has-

sanizadeh and Gray (1979a,b, 1980), Tosun and Willis (1980), Narasimhan

(1980b), Drew (1983), Whitaker (1985), Crapiste et al. (1986), and Bear and

Bachmat (1990). Basically, volume averaging is a very simple technique, based

on the mean value theorem for integrals. It states that for a given function

f(x), a unique average value 〈f〉 can be determined. On the other hand, a

given average value 〈f〉 can be the result of averaging different functions f(x).

Volume averaging considers two types of averages, the phase average, defined

by:

〈Ψ〉 =

∫

V0

ΨdV
∫

V0

1dV =
1

V0

∫

V0

Ψ dV (2.44)

with Ψ a generalized variable, and the intrinsic phase average defined by:

〈Ψ〉i =

∫

Vi

ΨdV
∫

Vi

1 dV =
1

Vi

∫

Vi

Ψ dV (2.45)
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with Vi the volume of phase i. The intrinsic phase average is defined as an

average in a specific phase i. In the above two formulas, the angular brackets

〈 〉 denote the average defined by the integrals. The intrinsic phase average

is commonly used to describe the liquid pressure, as this pressure is defined

inside the liquid phase only and not inside the whole averaging volume.

The microscale transport equations contain spatial and time derivatives. In

order to average the spatial derivatives, the need arises to interchange differ-

entiation with spatial integration. The resulting theorem is called the spatial

averaging theorem (Anderson and Jackson, 1967; Whitaker, 1967; Slattery,

1967; Gray, 1975; Gray and Lee, 1977). For a general variable (Gray et al.,

1993):

〈∇Ψ〉 = ∇〈Ψ〉+ 1

V0

∫

SΨ

νΨ dS (2.46)

with SΨ the surface of the averaging volume occupied by Ψ, and ν an outward

unit normal vector on SΨ. The above implies for the divergence operation:

〈∇ ·Ψ〉 = ∇ · 〈Ψ〉+ 1

V0

∫

SΨ

ν ·Ψ dS (2.47)

Gray (1975) introduced a consistent decomposition of the average value of a

variable in the local value and the local deviations from the spatial average:

〈Ψ〉 = Ψ− Ψ̇ (2.48)

whereby the dot denotes the deviations from the average. This decompo-

sition together with the spatial averaging theorem makes it possible to de-

rive macroscale equations in a mathematically well defined and traceable way

(Diedericks, 1999, p. 29). These averaging theorems, although mathematically

well defined for any (continuous) function, are physically meaningful only for

additive functions. Additive functions are those which measure the extent or

amount of a given property in the system (Sherwood, 1971).

Hassanizadeh and Gray (1979a) proposed a set of four criteria, which should,

in their view, be satisfied in the averaging process. These criteria are based

on physical reasoning and try to ensure consistent and physically meaningful

macroscale equations:
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criterion I When an averaging operation involves integration, the integrand

multiplied by the infinitesimal element of integration must be an additive quan-

tity.

Several authors violate this criterion and obtain physically questionable macro-

scopic balances (Kowalski, 2000; Hager and Whitaker, 2000, 2002a,b; Hsu and

Cheng, 1988; Pride and Flekkøy, 1999), see also Narasimhan (1980a) and the

response by W. G. Gray in Narasimhan (1980a). Hager and Whitaker (2002b)

showed that in certain situations this criterion can be relaxed. If the integrand,

written as a linear combination with a capacity function, is additive, then also

non additive quantities can be the directly averaged.

criterion II The macroscopic quantities shall exactly account for the total

amount of the corresponding microscopic quantity.

In effect criterion II is a balance statement, and could be paraphrased as: The

“large” is “the sum of all small parts”.

criterion III The primitive concept of a physical quantity, as first introduced

into the classical continuum mechanics, must be preserved by proper definition

of the macroscopic quantities.

Hassanizadeh and Gray (1979a) give an example for this criterion: “..., heat

is a mode of transfer of energy through a boundary different from work. The

definition of macroscopic heat flux must also be a mode of energy transfer

different from macroscopic work.”

criterion IV The average value of a microscopic quantity must be the same

function that is most widely observed and measured in a field situation or in

the laboratory.

Criterion IV is not based on physical reasoning, but on practical considera-

tions. The question arises what exactly should be considered the “most widely

observed and measured” quantity (see also the discussion about tensiometers

in sect. 3.4.2).

In their work Hassanizadeh and Gray (1979a) and Gray and Hassanizadeh

(1991b) show that volume integrals of quantities such as pressure, which are

defined per unit area, can be transformed into area integrals. This is of special

importance in multi-phase flow, where the area integrals are often evaluated

over the fluid-fluid interfaces (Bear and Bachmat, 1990).
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Closure

After volume averaging of the microscopic equations, the resulting macroscopic

equations still contain microscopic quantities, usually in the form of integrals of

microscale terms (Whitaker, 1980; Crapiste et al., 1986). The approximation

of these integrals in terms of macroscopic quantities is called closure. Different

methods can be found in the literature:

• Numerical methods: Quintard and Whitaker (1990, 1994), Fourie (2000).

• Empirical methods: Whitaker (1980), Bear (1988).

• Units cell concepts: du Plessis and Masliyah (1988, 1991), du Plessis and

Roos (1994), Hsu and Cheng (1988), Diedericks and du Plessis (1997),

Smit and du Plessis (2000), Hoffmann (2000b).

Here the unit cell concept is used. Up to now this concept has been applied

mainly to single-phase flow, and the application to multi-phase flow devel-

oped here extends this concept to the use in unsaturated flow. The work

presented here is parallel to the work of Hassanizadeh and Gray (1980). They

use thermodynamic relationships to constrain the closure problem while this

work directly approximates the closure problem.

2.3.2 Resulting theories

Once the flow description retains to the macroscale, a different terminology

is applied to the description of this flow. From experiments we know that at

different liquid saturations, different flow paths for the liquid exist. At low

capillary pressures the liquid preferentially occupies the smaller pores and cor-

ners in the porous medium. The liquid permeability is then determined by the

connectivity of the liquid phase and the amount of contact surface with the

solid. Different authors put forward flow models describing unsaturated flow.

Buckingham (1907) formulates his theory analogous to thermal and electrical

conduction. Whitaker (1986b) uses an analogy to Darcy’s law, and derives an

equation similar to Richards equation, assuming static contact lines and us-

ing order of magnitude analysis. Bear and Nitao (1993) derive a macroscopic

flux law including thermal effects and thermodynamic relations for three fluid

phases. Recently Pride and Flekkøy (1999) derived a macroscopic flux law in

the fixed contact line regime. Hassanizadeh and Gray (1997) criticize most
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models for apparent paradoxes and propose general relations based on ther-

modynamic relationships. The results of all these authors reflect their choices

during the averaging process. The derived macroscopic flux laws are often

similar, but it is not clear which one is more generally applicable in practical

calculations of unsaturated flow. Most of the proposed macroscopic equations

disregard time dependence or dynamics in the momentum balance and intro-

duce no dependence on average gradients.
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3 Development of a Mathematical

Model for Flow in Unsaturated Porous

Media

3.1 Introduction

This chapter describes the development of upscaled unsaturated flow equations

in porous media. In chapter 2 an overview of the different approaches to

volume averaging was given. From now on this dissertation is mainly concerned

with liquid movement. The gas phase is still assumed to be present and to

influence the liquid behavior, but is not described explicitly any more. The

main assumptions are listed in section 3.2. In section 3.3 the starting equations

on the pore scale and the boundary and initial conditions are stated. These

equations are volume averaged and the closure problem is developed in section

3.4. In chapter 4, a geometrical model for a Representative Unit Cell (RUC)

is described and analyzed and a method to solve the two-phase flow problem

inside an RUC is proposed.

The approach taken in here is based on the closure scheme developed by

du Plessis and Masliyah (1988). This scheme is augmented with additional

boundary conditions which are introduced due to fluid-fluid interfaces. Previ-

ous applications of du Plessis and co-workers described high Reynolds number

flow in porous media (du Plessis, 1994, 1992) and flow in granular porous media

(du Plessis and Masliyah, 1991; Knackstedt and du Plessis, 1996).

3.2 Assumptions

In this section the assumptions underlying the development of the unsaturated

flow model are stated formally. These assumptions are sometimes stated in

33
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the literature (Pride and Flekkøy, 1999), but more often they are implicitly

assumed (Whitaker, 1986b, 1980). It may seem that these assumptions are

too restrictive or too many, but they are less than the (implicit) assumptions

commonly made (Whitaker, 1986b). If additional assumptions are made during

the derivation of the equations, they will be clearly stated.

3.2.1 Assumptions regarding the fluids

Assumption 1 The fluids are incompressible and the density ρ is constant.

Incompressibility and constant density are reasonable for flow in unsaturated

soils, provided pressure variations are not too large. As this work is mainly

concerned with capillary held water, these variations are relatively small. Close

to a solid surface the variation of density of the liquid phase is relatively large,

but it is assumed that the liquid bound by adhesive forces does not contribute

to the flow.

Assumption 2 The viscosity µ is constant.

This assumption is common in the soil physics literature (Koorevaar et al.,

1983), but was questioned by Gray and Hassanizadeh (1991a). In sandy soils

it is justified, because only a small fraction of the liquid is held by adsorptive

surface forces close to the solid grains. In this small fraction density and

viscosity are not constant, but this fraction does not significantly contribute

to liquid flow (see sec. 2.2.2).

Assumption 3 The fluids exert no interfacial drag on each other.

Because the viscosity ratio between liquid and gas is very high (sec. 2.2.2), the

gas phase can be assumed to exert virtually no drag on the solid phase:

Assumption 4 The individual fluid phases remain continuous at all times.

Sometimes this continuity is through a thin film, which essentially allows no

flow.

The above assumption is made in order to remove the discontinuity at the con-

tact line between solid, liquid and gas. The assumption is reasonable, because

solid surfaces are covered by a thin film of liquid, which often is deposited by

vapor.
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Assumption 5 The gas phase is assumed to be at constant, atmospheric pres-

sure.

This assumption is identical to the gas phase pressure assumption made in

deriving Richards equation (Bear, 1988).

3.2.2 Assumptions regarding the porous medium

Assumption 6 The porous medium is non-oriented or isotropic in the sense

that there is no natural direction associated with the pore structure inside an

averaging volume.

Unconsolidated porous media are often isotropic within a specific layer. Due

to natural deposition and sedimentation patterns, a layered porous medium

is not isotropic. Here it is assumed that modeling takes place within such an

isotropic layer.

Assumption 7 The solid phase is fixed in space and time.

The solid phase is assumed to be incompressible and not moving relative to a

fixed reference frame.

Assumption 8 The porous medium is homogeneous on the averaging scale.

This assumption implies that there are no macroscopic boundaries inside an

averaging volume, and that there is no change of medium.

3.2.3 Assumptions regarding flow and capillarity

Assumption 9 The flow is essentially inertia free (see section 2.2.2) and the

liquid flow is governed by equations (2.38).

Assumption 10 The flow is isothermal, and thermal effects on the surface

tension, as described in e.g. Grant and Salehzadeh (1996), play no role.

Assumption 11 During and after drainage of the wetting liquid a thin liquid

film is left covering the solid surface. This implies an effective receding contact

angle θ = 0.
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Assumption 12 Contact lines between liquid, gas, and solid can move. This

movement is assumed to be relatively smooth.

The last assumption requires some explanation. Haines (1927) already showed

that, due to capillary forces and the geometry of the solid phase, rapid contact

line movement can occur in soils and lead to ”pressure jumps”. These pressure

jumps are of very small duration (Morrow, 1970), and are assumed to average

out in an averaging volume. Assumption 4 already stated that the solid surface

is always covered with a thin liquid film. Given this assumption, the present

assumption could be read as: contact lines between capillary held liquid, gas,

and solid covered with a thin liquid film can move.

Assumption 13 Gravity forces are small compared to capillary forces at the

pore scale.

The basis of this assumption was discussed in section 2.2.2.

Assumption 14 The profile of capillary pressure inside a pore perpendicular

to the flow is not directly influenced by the flow (sec. 2.2.2, eq. 2.36).

This assumption leads to a Poiseuille like description of the microscale flow in

the pores.

Assumption 15 Only movement of liquid held by capillary forces contributes

to flow, liquid held by adsorptive forces is essentially immobile.

The above assumption was explained in section 2.2.2.

3.2.4 Assumptions not made

It is also important to list some assumptions not made here, but that are

common in the volume averaging literature on two-phase porous media flows:

1. There are no assumptions about the pressure gradients inside the averag-

ing volume (in contrast with Alemán et al. (1989); Whitaker (1986a), see

also Pride and Flekkøy (1999)), except the standard volume averaging

length scale requirements (Crapiste et al., 1986). These state: micro-

scopic length scale ¿ radius of averaging volume ¿ macroscopic length

scale.
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2. No assumptions are made regarding the saturation gradient inside an

averaging volume, except the length scale constraints imposed by volume

averaging (Crapiste et al., 1986).

3. Dynamic effects are allowed in the macroscopic momentum balance and

not neglected as in Whitaker (1986b).

3.3 The Basic Interstitial Equations

At the pore or microscopic scale the momentum balance is described by the

Stokes equations (assumption 9). A pore can be occupied by air and water

simultaneously. The presence of a phase interface (air - water) and the geo-

metric configuration of the solid influence the configuration of the fluid phases

and their dynamic behavior (see section 2.2.2). The pressure is also influenced

by the phase interfaces. A jump in pressure across the interface, refereed to

as capillary pressure, is generated. The pressure is directly influenced by the

three-phase contact line of the solid, liquid, and gas.

For the liquid phase, the microscopic momentum balance equations (2.38) are:

−ρlg +∇pl = µl∇2vl

They are augmented by the mass balance equation (2.30):

∇ · (ρlvl) = 0

And with ρl = constant, this can be written as:

∇ · vl = 0 (3.1)

with boundary conditions (similar to equations (2.31)):

B.C.1 vl = 0 at solid-liquid interface (3.2)

B.C.2 vg = vl at gas-liquid interface (3.3)

B.C.3 pl(x) = −γglC at gas-liquid interface (3.4)

B.C.4 pl = pl0,1 at entrances and exits

of averaging volume

(3.5)

with C denoting the curvature of the gas-liquid interface and pl0,1 the entry

and exit liquid pressure of an averaging volume.
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Although the flow equations on the microscale are quasi-steady, due to the

boundary conditions, the flow can be unsteady. Formally:

pl0,1 = pl0,1(x, y, z, t) (3.6)

vl,g = vl,g(x, y, z, t) (3.7)

C = C(x, y, z, t) (3.8)

This dependence on the time evolution of the boundary conditions influences

the solution of the closure problem directly and gives rise to dynamic effects

in the volume averaged flow equations.

3.4 Volume Averaging

In section 2.3 volume averaging was explained. Due to the specific nature

of the two-phase flow problem certain averaging identities are worked out in

detail. Equations (3.1) and (2.38) are averaged term by term, using volume

averaging rules and theorems from vector integral calculus.

In the literature several examples exist of the use of volume averaging in a

porous medium with constant volume fractions of fluids inside an averaging

volume (see chapter 2). Averaging with variable fluid fractions is not common

and introduces extra terms in the averaged equations which are similar to the

case when the porosity varies (Ma and Ruth, 1993; Kaviany, 1995). Interfaces

between the different phases are taken into account and are modeled in the

closure approximation. This closure approximation circumvents the use of

constitutive equations, which conventionally parameterize for phase interface

effects (Whitaker, 1986b).

Here the boundary conditions are averaged also. This is necessary to keep the

volume averaged equations compatible with the boundary conditions. Many

workers do not directly consider the boundary conditions (Gray and Has-

sanizadeh, 1991a; Narasimhan, 1980b), or recognize their importance but ig-

nore them in the averaging process (Whitaker, 1986b; Crapiste et al., 1986).

The averaging of boundary conditions is sometimes used in pore network mod-

eling (Dahle et al., 2002) and in unit cell concepts (Ma and Ruth, 1993). The

direct averaging of the boundary conditions as part of the volume averaging

helps in making the volume averaged equations applicable to practical sit-

uations. If the boundary conditions are not in an averaged form they are

incompatible with the averaged equations.



3.4. VOLUME AVERAGING 39

3.4.1 Averaging of the mass balance equation

In contrast with single-phase flow, the mass balance equation has a different

macroscopic form than the microscopic one. This is due to the change of fluid

contents caused by the divergence of the macroscopic flow. This section follows

closely Whitaker (1980, 1986b). Starting with equation (3.1), averaging the

right hand side gives:

〈0〉 = 0 (3.9)

The flow is incompressible (assumption 3.2.1), and the average of the left hand

side is given by:

〈∇ · vl〉 = ∇ · 〈vl〉+
1

V0

∫

S

ν · vl dS

= ∇ · 〈vl〉+
1

V0

∫

Ssl

ν · vl dS +
1

V0

∫

Sgl

ν · vl dS (3.10)

= ∇ · 〈vl〉+
1

V0

∫

Sgl

ν · vl dS (3.11)

where Sgl is the gas-liquid interfacial area and Ssl is the solid-liquid interfacial

area. Because the solid-liquid interface is fixed in space, surface integrals

normal to the solid-liquid interface which in the integrand explicitly contains

the fluid velocity, are zero (eq. (3.2)). By making use of the transport theorem

(Gray et al., 1993, p. 136, eq. 7.4):

∫

V

∂f

∂t

∣

∣

∣

∣

x

dV =
d

dt

∫

V

f dV −
∫

S

ν ·wf dS (3.12)

where w is the velocity of the interface. Setting f = 1, V = nlVp (volume of

fluid):

∫

(nlVp)

∂1

∂t

∣

∣

∣

∣

x

d(nlVp) =
d

dt

∫

(nlVp)

1 d(nlVp)−
∫

S

ν ·w1 dS

0 =
∂nlVp
∂t

−
∫

Ssl

ν ·w dS −
∫

Sgl

ν ·w dS (3.13)
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0 =
∂nlVp
∂t

−
∫

Sgl

ν ·w dS

0 =
∂εnl
∂t
− 1

V0

∫

Sgl

ν ·w dS (3.14)

with ε the porosity. Adding equation (3.14) to equation (3.11):

〈∇ · vl〉 = ∇ · 〈vl〉+
1

V0

∫

Sgl

ν · (vl −w) dS +
∂εnl
∂t

(3.15)

Assuming no mass transport over the gas-liquid interface (immiscible) requires

that vl −w = 0 or vl = w, so that the above equation reduces to:

〈∇ · vl〉 = ∇ · 〈vl〉+
∂εnl
∂t

(3.16)

This equation contains the time derivative of the liquid content. The time

dependence enters the equation due to the time dependence of the microscopic

boundary conditions, i.e. the movement of the gas-liquid interface, resulting in

the non-zero divergence of the average velocity.

3.4.2 Averaging of the momentum balance equation

Like the mass balance equation, the momentum balance (eq. (2.38)) is averaged

term by term.

Averaging of the body-force term

The components of the body force term are constant, and their treatment in

volume averaged form is similar to the microscopic form (Whitaker, 1986b):

〈−ρlg〉 = − 1

V0

∫

V0

ρlg dV (3.17)

〈−ρlg〉 = − 1

V0





∫

Vl

ρlg dV +

∫

V0−Vl

ρlg dV



 (3.18)
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Because ρl is zero in V0 − Vl, i.e. the volume not occupied by the liquid:

〈−ρlg〉 = − 1

V0

∫

Vl

ρlg dV (3.19)

〈−ρlg〉 = −VlV0
ρlg (3.20)

〈−ρlg〉 = −εnlρlg (3.21)

Averaging of the pressure term

The pressure term contains the liquid pressure gradient. It is the most prob-

lematic term in the averaging process. Different researchers treat this term in

completely different manners (Whitaker, 1986b; Hassanizadeh and Gray, 1993;

Hassanizadeh et al., 2002; Dahle et al., 2002). As described in chapter 2, the

pressure is used to describe the capillary component of the liquid potential and

it is assumed that this drives the flow and is responsible for the bulk liquid

phase movement. The treatment is based on an incompressible liquid. No

macroscopic volume average form for the phase average pressure is proposed.

Instead a nonlocal formulation is developed in chapter 5. It is based on an

areal averaged pressure. In essence, the pressure gradient term is part of the

closure problem, and in this chapter simply written in integral form:

〈∇pl〉 =
1

V0

∫

V0

∇pl dV (3.22)

Treatment of the gradient of the liquid pressure as part of the closure prob-

lem is not common, and the question arises why the more common treatment

of the pressure as a volume averaged quantity as in Whitaker (1986b), or a

thermodynamics based approach as in Hassanizadeh and Gray (1997) is not

used. In appendix A the traditional method of averaging the liquid pressure

term is worked out. The major problem with this method is that there are

no instruments measuring a volume averaged pressure. All instruments (e.g.

tensiometers) measure a force per unit area, i.e. pressure averaged over a rep-

resentative area. A tensiometer measures the areal averaged pressure around

its circumference. This measurement includes the effect of gravity on the mea-

surement, but this effect is small when the tensiometer is small. A similar

reasoning can be applied to a multi-step outflow experiment in a pressure cell.

Here the boundary conditions are applied on ceramic plates, which cover the
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entrance and exit of the porous medium, and thus apply a uniform areal aver-

aged liquid pressure. Here the gradient of the volume average pressure is not

used at the boundaries of the porous medium, and on the macroscopic scale

no volume average pressure needs to be defined (criterion IV, p. 29). Instead

of the gradient of the volume averaged liquid pressure used in the traditional

equations, the average of the pressure term is expressed here as a nonlocal

term, which can be called the “volume average difference of the area averaged

liquid pressure”. The treatment of measurements and calculations for flow in-

side a porous medium is further developed in chapters 5 and 6. Alemán et al.

(1989) in effect use the pressure at the boundaries of an averaging volume to

define a volume averaged liquid pressure. As such their treatment is similar to

the one used here, but they make the additional simplifying assumption that

no pressure gradient inside of the averaging volume exists. As shown earlier,

this leads to the following paradox: Flow is due to a pressure gradient, and

if there is flow inside an averaging volume, there must be a pressure gradient.

But in order to conduct the volume averaging it is assumed that there is no

pressure gradient, and this implies no liquid flow.

Averaging of the viscous term

The viscous term is averaged in a similar way as described by du Plessis and

Diedericks (1997) and Whitaker (1986b). The major difference in the deriva-

tion is due to the influence of the time dependent gas-liquid boundary:

〈µl∇2vl〉 = 〈µl∇ · (∇vl)〉

= µl∇ · 〈∇vl〉+
µl
V0

∫

Sslg

ν · (∇vl) dS

= µl∇ ·






∇〈vl〉+

1

V0

∫

Sslg

νvl dS






+

µl
V0

∫

Sslg

ν · (∇vl) dS

= µl∇2〈vl〉+
µl
V0






∇ ·

∫

Sslg

νvl dS +

∫

Sslg

ν · (∇vl) dS






(3.23)

Using the vector identity (Bird et al., 1960, eq. A.3-14):

∇2〈vl〉 = ∇(∇ · 〈vl〉)−∇× (∇× 〈vl〉)
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the above equation can be written as:

〈µl∇2vl〉 = µl [∇(∇ · 〈vl〉)−∇× (∇× 〈vl〉)]

+
µl
V0






∇ ·

∫

Sslg

νvl dS +

∫

Sslg

ν · (∇vl) dS






(3.24)

This form of the volume averaged viscous term will be further used in the

closure. It should be noted that the macroscopic velocity 〈vl〉 is non-zero if

the liquid content inside an averaging volume changes due to inflow, even if

there is no outflow or vice versa (Pride and Flekkøy, 1999). The term µl∇2〈vl〉
is usually called the Brinkman term (Brinkman, 1947, 1949; Kaviany, 1995).

3.4.3 Averaging of the boundary conditions

In order to keep the boundary conditions (eqs. (3.2), (3.3), (3.4), and (3.5))

compatible with the volume averaged equations, they too need to be averaged.

The boundary conditions internal in an averaging volume have no analog on

the macroscopic scale, and thus do not arise on this scale. They are accounted

for in the closure. In effect only equations (3.5) exist on the macroscale, sup-

plemented by other macroscale boundary conditions (see sec. 5.4). Equation

(3.5) needs to be compatible with the averaged pressure gradient term, and as

such is area averaged over the entrances and exits of an averaging volume:

〈pl|0〉 =
1

S0

∫

S0

p0 dS

= p0 (3.25)

〈pl|1〉 =
1

S1

∫

S1

p1 dS

= p1 (3.26)

with the following definitions:

p1,0 =
1

Sexit, entry

∫

Sexit, entry

pl dS (3.27)

That is, p1,0 is the area averaged pressure at the exit c.q. entrance.
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3.4.4 The combined averaged equations

The combined averaged mass balance equation becomes (eqs. (3.16), (3.9)):

∇ · 〈vl〉 = −
∂εnl
∂t

(3.28)

The volume averaged momentum balance equations are obtained by combining

equations (3.21), (3.22) and (3.24):

−εnlρlg + µl [−∇(∇ · 〈vl〉) +∇× (∇× 〈vl〉)]

=
µl
V0
∇ ·

∫

Sslg

νvl dS +
µl
V0

∫

Sslg

ν · (∇vl) dS −
1

V0

∫

V0

∇pl dV (3.29)

These are the upscaled momentum balance equations valid at the macroscale.

The terms on the left hand side only contain macroscopic variables, whereas the

terms on the right hand side contain microscopic variables inside the integrals.

These terms represent the closure problem. In chapter 5 these equations are

further analyzed. The averaged boundary conditions are given by p0 and p1.



4 Closure Model

4.1 Introduction

This chapter describes the development of a Representative Unit Cell (RUC)

model for the closure of the volume averaged equations derived in chapter 3,

and the proposed solution for the local flow equations. In sections 4.2 and

4.3 the geometrical RUC model together with the capillary pressure model is

explained. An RUC is similar to a Representative Elementary Volume (REV)

in the sense that it is a three dimensional averaging volume, but the concept

of an RUC also entails a detailed geometrical description. This description is

to imagine a typical porous medium configuration in which the flow processes

are modeled. The RUC should not be equated with a portion of a real porous

medium, because not all features of a real porous medium are modeled. Its

“average” behavior is assumed to mimic the behavior of a real porous medium.

The emphasis is on those features which directly influence the flow processes

on average. The RUC needs to accommodate the topology, geometry and

capillary pressure relationship of a porous medium. As shown in chapter 2,

capillarity plays a major role in unsaturated flow. The geometry of the RUC is

expressed in terms of the macroscopic parameters porosity, ε, and the critical

radius for drainage, rc. Additionally three RUC parameters, a, b, and j, will

be defined. In sections 4.4 and 4.5 the microscopic momentum equations are

solved, based on a Poiseuille type flow model. The solution is then used in the

closure of equations (3.29).

4.2 Description of the RUC

The RUC is made of a cubic unit cell. In this chapter no explicit relations

are given for the stacking of RUC’s, as we are concerned only with the local

flow problem here. du Plessis and Diedericks (1997) show that for a vari-

ety of RUC configurations in single-phase flow, maximum staggering is the

45
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Figure 4.1: Two different RUC’s, frontal view; dashed lines indicate

opening to neighboring RUC; gray parts denote solid and white parts

denote pore (symbols explained in text).

appropriate stacking configuration. For two-phase flow it is important to al-

low for continuity of the capillary held liquid phase, and thus corners should

be assumed continuous across RUC’s. The RUC’s are assumed to model an

isotropic porous medium, i.e. the configuration of the RUC’s does not depend

on direction (assumption 6, p. 35). The concept of an RUC is based on what a

particle of liquid “sees” while flowing through a porous medium, and as such

is similar to the definition of an REV.

4.2.1 Topology and geometry

The topology of the RUC allows for continuous corners and channels. If this

were not the case, fluid could not flow, or capillary held fluid would be dis-

continuous, and two-phase flow would cease. To allow for a variety of different

porous media to be modeled, an RUC can have open areas connecting to neigh-

boring RUC’s (fig. 4.1). The channels in the RUC follow a three-dimensional

path, following three edges of the RUC cube. They are non-intersecting and

continuous (fig. 4.2).
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Figure 4.2: Geometry of RUC.

4.2.2 Geometrical properties

The channels inside the RUC model the pores in a porous medium. For single-

phase flow, du Plessis and Roos (1994) developed an RUC model for sand-

stones. The RUC model presented here is adapted to two-phase flow. The

cross-section of the channels can have different forms appropriate for the mi-

crostructure of the porous medium, e.g. triangular wedge like. The triangular

wedge or corner can be open to the neighboring RUC or closed. This form is

one of many: elliptical, rhombical and hypotrochoidal channels are also pos-

sible (van Brakel, 1975; Sisavath et al., 2000). Once a geometry is chosen for

a given RUC, the geometrical parameters used in the flow equations can be

determined.

The frontal pore area Ap of the RUC is given by (fig. 4.2):

Ap =
1

2
adbrcj (4.1)

In this definition multiple channels are taken into account through the factor

j, the number of channels or wedges inside an RUC. The factor a accounts for
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the base length of the wedge relative to d, the RUC dimension. If the RUC

channel is closed b = 2, or if open b = 1 (fig. 4.1). The critical radius for

drainage (explained in section 4.3) is given by rc.

The saturated “wetted” perimeter of a single pore corner is defined as:

Pp = ad+ (a2d2 + b2r2c )
1/2 (4.2)

and the saturated wetted perimeter of an RUC is:

P =

{

j(ad+ (a2d2 + b2r2c )
1/2) : if b = 2

j(a2d2 + b2r2c )
1/2 : if b = 1

(4.3)

Through trigonometric relations tanα and sinα are defined by:

tan(α) =
rc
ad

(4.4)

sin(α) =
rc

(r2c + a2d2)1/2
(4.5)

with α the half opening angle of the wedge. The pore volume Vp is defined

from the RUC geometry as:

Vp = 3dAp −
j

3
(a2d2brc + b2r2cad) (4.6)

= Ap(3d−
2

3
(ad+ brc)) (4.7)

As an approximation the flow length lg inside the RUC is computed by re-

quiring that the pore volume is equal to the frontal pore area times the flow

length:

Vp = lgAp (4.8)

lg =
Vp
Ap

(4.9)

=
2εd2

abrcj
(4.10)

using the relation Vp = εd3 and equation (4.1). The above definition of lg does

not take into account changes in volumetric flow inside the different corners,
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but is based on the ratio of the volume of a straight channel to the curved one

inside the RUC.

Taking together equations (4.1), (4.6) and Vp = εd3:

d =
brc
12ε

(

(a2j2(2a− 9)2 − 48ajε)1/2 + aj(9− 2a)
)

(4.11)

In the above development rc and ε are taken as the main structural parameters

of the porous medium. These parameters in turn define the magnitude of the

parameters d and α, together with a, b and j. With these, the geometry

of an RUC is completely defined. The parameters rc and ε are regarded as

macroscopic parameters of the porous medium, and are directly measurable

on the macroscopic scale.

4.3 Capillary Pressure Relationship

The relation between the pressure difference between the fluids and the liquid

saturation is modeled similar to Mason and Morrow (1991), using the Mayer

and Stowe-Princen (MSP) method (Princen, 1969a,b, 1970). The relationship

does not take into account the effects of short range adhesion forces, but could

be modified accordingly with the Augmented Young-Laplace equation (see

section 2.2.2).

If a non-wetting fluid enters a pore filled with a wetting fluid, an interface

between the two fluids is formed. This interface is called a main terminal

meniscus (MTM). As soon as the two principal radii of the meniscus have

the same magnitude, the non-wetting fluid enters the capillary. This radius is

called the critical radius for drainage, rc. During imhibition, when a wetting

fluid fills a capillary, a possibly different critical radius corresponds to complete

filling of the capillary with the wetting fluid. This radius corresponds to the

situation that the liquid from the separate corners starts to touch each other.

Both critical radii depend on the contact angle and the specific geometry of

the pore. For the modeling of the capillary pressure saturation relationship,

channel curvature in the longitudinal direction is not taken into account. The

critical radius for drainage is expressed as:

rc = −
γgl
plc

(4.12)

In this expression assumption 11 (p. 35) was used, which implies that the con-

tact angle θ = 0. The critical liquid pressure for drainage plc is similar to
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the air entry pressure in traditional soil physics modeling. Equation (4.12)

is written without the factor 2 in the Young-Laplace equation for a spherical

interface. This corresponds to R2 =∞ in equation (2.18). Effectively it is as-

sumed that the gas liquid interface is approximately cylindrical at r = rc inside

a pore, and that at gas entry, the pore drains abruptly. The use of equation

(4.12) allows rc to be calculated from the air entry pressure of a desaturation

experiment. Thus rc is defined based on a macroscopic measurement and as

such a macroscopic measurable parameter. In effect, rc denotes some kind of

“average” critical radius for drainage.

4.3.1 Geometry of liquid inside a corner

In this section basic equations for the wetting fluid (liquid) inside a corner of a

pore are derived. The following equations are derived for a single corner only

(fig. 4.3) and still have to be assembled for the particular RUC in question.

The fluid configuration has to obey the Concus-Finn conditions (Weislogel and

Lichter, 1998) in order to yield a stable interface:

θ <
π

2
− α (4.13)

with θ the contact angle and α the half opening angle of the corner. This con-

dition states that liquid forms a stable interface only in certain combinations

of corner opening half angle and contact angle. The length of the solid-liquid

interface inside a corner is defined by (see fig. 4.3):

Lsl =
2r cos(θ + α)

sin(α)
(4.14)

and with θ = 0:

Lsl =
2

tan(α)
r (4.15)

= fLsl
r (4.16)

Similarly, Lgl is defined as:

Lgl = (π − 2α− 2θ)r (4.17)

and with θ = 0:

Lgl = (π − 2α)r (4.18)

= fLgl
r (4.19)



4.3. CAPILLARY PRESSURE RELATIONSHIP 51

���

������ 	


��



�

��� 	

Figure 4.3: Geometry of interface between liquid and gas inside a cor-

ner; direction of flow is perpendicular to the paper.

The liquid filled area of a corner, Ac, (fig. 4.3) given a radius of curvature of

the gas-liquid interface, is defined by:

Ac = r2
[

cos2(θ + α) cos(α)

sin(α)
+ α+ θ − π

2
+

1

2
sin(2θ + 2α)

]

(4.20)

and, again, with θ = 0:

Ac = r2
1 + (α− π

2 ) tan(α)

tan(α)
(4.21)

= fA r2 (4.22)

If the curvature of the gas liquid interface is approximately along r, i.e. R1 in

equation (2.13), the liquid pressure can be expressed as:

pl = −
γgl
r

(4.23)

The liquid volume in a corner in the two-phase case is calculated as:

Vc =
∫

lg

Ac dx (4.24)

And the liquid volume inside an RUC as:

Vl =

∫

lg

1

2
Acbj dx (4.25)
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=
1

2
bjVc (4.26)

The above definitions define the geometry related variables for an RUC. They

will be used in the solution of the local RUC flow model in section 4.4 and in

chapter 5 for the closure.

4.4 Flow Models

In order to find an approximate analytical solution for the closure problem,

the resistance to flow in the RUC channels needs to be specified. Single-phase

flow in micro channels was studied by e.g. MacLaine-Cross (1969), Ayyaswamy

et al. (1974), Sisavath et al. (2000, 2001), Thompson and Fogler (1997), and

Patzek and Kristensen (2001). The standard monograph on the subject is

Shah and London (1978). Common to these approaches is the assumption

of Stokes flow, which leads to a Poiseuille flow regime inside the channel for

fully developed flow (Romero and Yost, 1996; Weislogel and Lichter, 1998). In

two-phase flow in micro channels, the liquid is in part in contact with the solid

surface, and in part with another fluid phase. Here the other fluid phase is a gas

(air), which exerts no shear stress on the liquid (Ma et al., 1994; Hilfer, 1996).

For slow flows, as studied here, the velocity profile is nearly instantaneously

fully developed (Weislogel and Lichter, 1998), and curvature effects along the

corner are not significant. This assumption introduces negligible error if the

flow length is larger than 2−3 times the hydraulic radius (Ruth and Ma, 1993).

How can such a simple flow model reflect the flow in porous media, where the

pores are not smooth and converging-diverging? Erickson et al. (2002) showed

by numerical calculations that the basic flow mechanism in capillary pressure

driven flow does not change qualitatively in converging-diverging pores in an

average sense. What does change are the values of some parameters, but

the dynamics stay the same. Borhan and Rungta (1993) showed, by using a

semi-analytic model for flow between periodically corrugated plates, that the

flow equations can be scaled to the standard dynamic ones, but with another

characteristic capillary penetration time. Lago and Araujo (2001) and Staples

and Shaffer (2002), by experiments and by a morphological porous medium

model, showed that these dynamics also hold in porous media. Lago and

Araujo (2001) also observed the typical algebraic behavior of the capillary

velocity against time. As slow, continuous flow is assumed, contact line pinning

is assumed to play no significant role. Pinning is mostly important near the

imhibition threshold, but there is no direct evidence that it is important in
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corner flow (Schäffer and Wong, 2000). Lago and Araujo (2001) showed that

pinning has influence in packings of glass beads, but that no such behavior can

be observed in sandstones. It is assumed that this has to do with the micro

structure of the pores in packings of glass beads. In these the wetting fluid has

no continuous corners for flow, but instead has to follow converging-diverging

flow paths. In sandstones the flow paths are more wedge like, as is assumed

here. Weislogel and Lichter (1998) state that because the flow in a corner is

predominantly parallel to the contact line, the normal velocity perpendicular

to the contact line is small, and the discontinuity in the velocity at the contact

line is not significantly influencing the flow (see assumption 12, p. 36).

Rewriting the momentum balance equations (eqs. 2.10) as (Shah and London,

1978):

∇2vl =
1

µ
∇pl (4.27)

and:

∇2vl = constant (4.28)

i.e. fully developed flow. Under the assumption of Poiseuille flow this leads to

(Panton, 1984):

vp,c = −
Fp,c

µl
Ac

∂pl
∂x

(4.29)

with Fp,c a resistance factor and the average pore or corner velocity defined

as:

vp,c =
1

Ac

∫

Ac

vl dA (4.30)

4.4.1 Single-phase flow

For single-phase flow, the magnitude of vp does not change in axial direction.

Fp is a constant, as is the pressure drop. Commonly the resistance factor for

laminar flow in pipes is expressed as the product of the Fanning friction factor

f and the Reynolds number Re (Shah and London, 1978):

fRe = constant (4.31)
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The definition of the Reynolds number for flow in the pores is:

Re = ρl |vp|
4rh
µl

(4.32)

The Fanning friction factor is given by (Ma et al., 1994; Shah and London,

1978):

f =
2rh

ρl|vp|2
∂pl
∂x

(4.33)

Combining equations (4.32) and (4.33) gives:

fRe =
8r2h

µl |vp|
∂pl
∂x

(4.34)

with the hydraulic radius rh of a cross section of the pores inside an RUC

defined by:

rh =
Ap

Pp
(4.35)

Combined, the above equations define the following equation for single phase

flow in a pore:

vp = − 8r2h
µl fRe

∂pl
∂x

(4.36)

By comparing equations (4.29) and (4.36), the relation between fRe and F can

be obtained:

Fp =
8

fRe

r2h
Ap

(4.37)

Numerical values for fRe are given in Shah and London (1978) for different

pore geometries.
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4.4.2 Two-phase flow

Capillary driven two-phase flow in a corner is described by a Poiseuille type

equation, similar to a nonlinear diffusion equation (Dong and Chatzis, 1995;

Romero and Yost, 1996; Weislogel and Lichter, 1998). This nonlinear partial

differential equation is similar to the foam drainage equation (Verbist et al.,

1996). In principle it can be transformed to an ordinary differential equation by

a similarity transformation (Mayer et al., 1983). Weislogel and Lichter (1998)

list classes of solutions for this equation with given boundary conditions. For

instance, for a constant pressure boundary condition the speed of the advanc-

ing meniscus is proportional to
√
t. There are no general analytical solutions

available for arbitrary initial and boundary conditions, but the dynamics were

studied for a variety of conditions by Weislogel and Lichter (1998), Weislogel

(2001), and Romero and Yost (1996). Solutions were established for planar

and non-planar corner geometries. Apart from a solution for the dynamics of

this equation, an approximation for the resistance factor is also required. The

derivation of the resistance factors for two-phase flow in corners was studied

by Ayyaswamy et al. (1974). Ransohoff and Radke (1988) used finite element

calculations to derive the resistance factor. Zhou et al. (1997) developed an-

alytical correlations, but their correlations can deviate substantially from the

true solution. Weislogel and Lichter (1998) developed the method used here,

by scaling of the flow equations. The corner flow problem is also widely studied

in heat transfer in micro channels, e.g. in electronics cooling. These solutions

are usually not applicable, because due to forced convection the shear stress

at the gas-liquid interface is not negligible (Suh et al., 2001).

The general geometry of the flow is shown in figure 4.4. The governing equation

(4.27) can be rewritten as:

∂pl
∂x

= µl

(

∂2

∂y2
vl +

∂2

∂z2
vl

)

(4.38)

Scaling by x∗ = x/L, y∗ = y/H, z∗ = z/(H tan(α)), v∗ = vl/v, and P ∗ =

fHpl/γgl (with starred quantities denoting dimensionless quantities), yields:

γgl
HfL

∂P ∗

∂x∗
= µlv

(

1

H2 tan2(α)

∂2v∗

∂y∗2
+

1

H2

∂2v∗

∂z∗2

)

(4.39)

with L a characteristic length scale along the pore, H a characteristic height

of the liquid, α the half opening angle of the wedge, v a characteristic velocity,
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Figure 4.4: Geometry for two-phase corner flow in a wedge, gray area

denotes fluid filled part.

and P ∗ scaled by fH
γgl

to take surface tension effects into account. The factor

f is defined by (Weislogel and Lichter, 1998):

f =
sinα

cos θ − sinα
(4.40)

Written as a balance between the left hand side and the right hand side,

and dropping the differential terms, assumed O(1) (Weislogel, 2001), equation

(4.39) becomes:

γgl
HfL

∼ µlv

(

1

H2 tan2(α)
+

1

H2

)

=
µlv

H2 sin2(α)
(4.41)

Solving for v, this gives the velocity scale:

v =
H

L

γgl sin
2(α)

µlf
(4.42)

This velocity scale is composed of the geometry dependent terms H
L
sin2(α)

f ,

and the balance between surface tension and viscosity. It is used to scale the

resistance factor for two-phase flow. This simple analysis shows that surface

tension, viscosity and geometry are the main determining factors for this type

of flow.
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Two-phase flow model

In this section the flow model for two-phase flow is developed. The model

takes into account the change of liquid area available for flow along a pore

coupled to the change of capillary pressure. The mass balance equation for

quasi one-dimensional flow along a corner can be written as (Dong and Chatzis,

1995):

∂

∂x
qc(x, t) = −

∂

∂t
Ac(x, t) (4.43)

with qc(x, t) = vcAc, the volumetric corner discharge.

The scaling factor of equation (4.42) is based on a two-dimensional flow de-

scription. In order to use it in the quasi one-dimensional Poiseuille equa-

tion (eq. (4.29)), it is adapted resulting in a dimensionless resistance factor

Fv
sin2(α)
f2fA

. Substituting this resistance factor in the flow equation (eq. (4.29)),

the flow equation for a corner becomes:

vc = −
Fv

µl

sin2(α)

f2fA
Ac

∂pl
∂x

(4.44)

for Poiseuille type flow (Weislogel and Lichter, 1998). Fv is a dimensionless

constant, defined as in Weislogel and Lichter (1998):

Fv = 1.6 ... 1.8 ≈ 1.7 (4.45)

Equation (4.44) is a scaled form of equation (4.29). The resistance factor Fc

for two-phase flow from equation (4.29) can then be written as:

Fc = Fv
sin2(α)

f2fA
(4.46)

In steady state, equation (4.43) becomes ∂
∂xqc(x, t) = 0 and can be analytically

integrated together with equation (4.44). This leads to an expression of the

liquid area in a corner:

Ac(x) = (A
3/2
0 + x

(A
3/2
1 −A

3/2
0 )

lg
)2/3 (4.47)

where the subscripts 0 and 1 denote the entrance and exit of the corner. The

above equation can be integrated along the corners in a RUC, yielding an
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expression for the volume of liquid, expressed in terms of liquid entrance and

exit pressure. Using equation (4.25):

Vl =
3bjfAγ2gllg(p

−5
1 − p−50 )

10(p−31 − p−30 )
(4.48)

whereby equations (4.22) and (4.23) are used to express Ac in terms of pl.

With the definition of nl = Vl/Vp (eq. (2.40)):

nl =
3bjfAγ2gllg(p

4
0 + p1p

3
0 + p20p

2
1 + p0p

3
1 + p41)

10Vp(p20 + p0p1 + p21)p
2
0p
2
1

(4.49)

The above expression for nl will be used in chapter 6 in the calculations of the

quasi steady momentum balance. If p0 = p1 = pla:

nl =
bjfAγ2gllg

2Vppla
2 (4.50)

In the closure (ch. 5), the following definition for the cross sectional average

shear stress for a corner is used (Shah and London, 1978; Ma et al., 1994):

τSsl(x) = −
∂pl
∂x

Ac

Lsl
(4.51)

4.5 Velocity Relations

The flow model introduced in the last section describes the flow inside a pore.

Due to the tortuosity of the liquid flow, the pore length average velocity is not

equal to the volume averaged velocity (du Plessis and Masliyah, 1988). Figure

4.5 schematically shows this in 2-D. In order to have a certain volumetric

discharge through the RUC, the microscale or pore velocity needs to be larger

than the macroscale or volume average velocity. The following definitions are

used to express the pore or corner average velocity in the volume average

velocity:

vca =
1

lg

∫

lg

vc dx (4.52)

vD = 〈vl〉 =
εnldbj

2lg
vca (4.53)



4.5. VELOCITY RELATIONS 59

���

���

Figure 4.5: Schematic explanation of the difference between pore

length average and volume average velocity (vp pore velocity, vD vol-

ume average velocity), note distorted scale of vectors.

For single-phase flow the analogous expression becomes:

vD = 〈vl〉 =
εdbj

4lg
vp (4.54)

The definitions were derived by equating the volumetric flux through the pores

to the volumetric flux through an RUC. The above relations will be used in

chapter 5 for the closure modeling.
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5 Closure Modeling

In chapter 3 the averaged equations were derived. Chapter 4 describes an RUC

model, in which the microscopic flow processes are modeled. In this chapter

equations (3.28) and (3.29) will be combined with the results from chapter

4. The closure problem in these equations, i.e. the integrals still containing

microscopic quantities, will be solved and the microscopic quantities will be

replaced by macroscopic quantities. Boundary and initial conditions are stated

and the equations are formulated to be compatible with these conditions. For

the solution of the closure problem, the quasi one-dimensional flow modeling

inside the pores, adopted in chapter 4, implies that the RUC is aligned with

vD. In chapter 6 the equations will be further analyzed.

In equations (3.29), three integral terms still contain microscopic parameters:

µl
V0
∇ ·

∫

Sslg

νvl dS +
µl
V0

∫

Sslg

ν · (∇vl) dS −
1

V0

∫

V0

∇pl dV (5.1)

These terms are called: the divergence term, the viscous term and the pressure

term. In the following sections these are reformulated term by term.

5.1 Closure of the Divergence Term

The divergence term models the influence of the flow on the gas-liquid inter-

face. Whitaker (1986a,b) incorrectly stated that this term was zero, because

he assumed a no-slip condition at the gas-liquid interface. Bousquet-Melou

et al. (2002) derived a simplified closure for the divergence term for solidifica-

tion problems. Their closure was based on a quasi no-slip condition, and the

development followed here results in a similar macroscopic term as derived by

Bousquet-Melou et al. (2002), although the specifics of the closure are different.

In order to approximate the divergence term, the liquid velocity is split into

61
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a part normal to the gas-liquid interface and a part tangent to the interface

(Chen et al., 2000):

vl = vlνν + vlss (5.2)

with s a unit vector tangent to the interface. The divergence term becomes:

µl
V0
∇ ·

∫

Sslg

νvl dS =
µl
V0
∇ ·

∫

Sslg

ν(vlνν + vlss) dS (5.3)

The magnitude of vlν is much smaller than the magnitude of vls , because the

flow is mainly tangent to the interface in the length direction of a corner. If

the above products were written differently, the two tensors νν and νs would

arise directly. The components of both tensors are usually of the same order

of magnitude. Assuming that vlss can be modeled by vca, and dropping the

smaller term containing vlν :

µl
V0
∇ ·

∫

Sslg

νvl dS ≈ µl
V0
∇ ·

∫

Sslg

νvca dS (5.4)

Probably vca in the above equation is an overestimation of the magnitude,

because the integral is over the total solid-liquid-gas interface, and velocity at

the solid-liquid interface is zero. The integral in equation (5.4) can be directly

solved by taking vca out of the integral, because it is already an averaged

quantity:

µl
V0
∇ ·

∫

Sslg

νvl dS ≈ µl
V0
∇ ·

∫

Sslg

ν dS vca (5.5)

Using the volume averaging rule (Crapiste et al., 1986):

1

V0

∫

Ssgl

ν dS = −∇(εnl) (5.6)

equation 5.5 becomes:

µl
V0
∇ ·

∫

Sslg

νvl dS ≈ −µl∇ · (∇(εnl) vca) (5.7)
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Using equation (4.53):

µl
V0
∇ ·

∫

Sslg

νvl dS ≈ −2µllg
dbj
∇ · [(∇nl)

1

nl
vD] (5.8)

In this derivation only the larger term in the integral was taken into account.

There is considerable uncertainty if the above derivation is accurate, but dur-

ing the order of magnitude analysis in section 6.2, it will be shown that the

divergence term is small and is not expected to influence the flow significantly.

If the smaller term containing vlν was retained, a dynamic term would result

(see also section 5.2.2). Equation (5.8) is similar to one of the closure terms

derived by Bousquet-Melou et al. (2002) and Goyeau et al. (1997).

5.2 Closure of the Viscous Term

The viscous term describes the viscous dissipation inside the pore due to the

flow of liquid and the momentum change due to the change of gas-liquid in-

terfacial area:

µl
V0

∫

Sslg

ν · (∇vl) dS =
µl
V0

∫

Ssl

ν · (∇vl) dS +
µl
V0

∫

Sgl

ν · (∇vl) dS (5.9)

The integral over the solid-liquid interfacial area and the integral over the gas-

liquid interfacial area in equation (5.9) are treated separately in the following

sections. All shear stress acts along the solid-liquid interface, as no shear stress

is assumed to act on the gas-liquid interface (eqs. (3.3), (3.4)) (Suh et al., 2001).

However due to the change of gas-liquid surface area and liquid volume, the

gas-liquid surface area term is non-zero.

5.2.1 The solid-liquid interfacial area term

The microscopic Poiseuille flow model from section 4.4.2 is used here to derive

a volume averaged expression for the momentum dissipated through friction

along the surface of the solid phase inside the RUC:

µl
V0

∫

Ssl

ν · (∇vl) dS =
µl
V0

∫

Ssl

∂vl
∂ν

dS

=
µl
V0

∫

lg

∫

Lsl

∂vl
∂ν

dL dxc (5.10)
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whereby ∂
∂ν is the directional derivative in the direction of ν with dimension

length−1. With τsl = − 1
Lsl

∫

Lsl

µ ∂
∂νvl dL (Shah and London, 1978):

µl
V0

∫

Ssl

ν · (∇vl) dS = − 1

V0

∫

lg

τslLsl dxc

using equations (4.51), (4.29), (4.52) and (4.53):

µl
V0

∫

Ssl

ν · (∇vl) dS = − 1

V0

∫

lg

− ∂pl
∂xc
Ac dxc

= − µl
FV0

∫

lg

vc dxc

= − µllg
FV0

vca

= −
2µll

2
g

εnldFV0bj
vD (5.11)

For two-phase flow equation (5.11) with equation (4.46) becomes:

µl
V0

∫

Ssl

ν · (∇vl) dS = −
2µl f

2 fA l2g

εnl d Fv sin
2(α) V0bj

vD (5.12)

And for single-phase flow the above equation with equations (4.37) and (4.54)

becomes:

µl
V0

∫

Ssl

ν · (∇vl) dS = −
µl fRe Ap l2g
2ε d r2h V0bj

vD (5.13)

The form of the solid-liquid interfacial area term for single-phase flow in

equation (5.13) is different from the expression developed by du Plessis and

Masliyah (1988). They choose to express this term directly as a function of

wetted solid surface area, and not in terms of the hydraulic radius as in equa-

tion (5.13). In principle these two formulations are compatible and can be

expressed in each other. Here the choice is for the hydraulic radius form,

because it connects better with the two-phase form of the equations.
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5.2.2 The gas-liquid interfacial area term

The gas-liquid interfacial area term describes the change of momentum due to

the change of gas-liquid surface area during unsteady flow. In most descriptions

of unsaturated flow this term is ignored (Whitaker, 1986b). Pride and Flekkøy

(1999) described the influence of the change of interfacial area on unsaturated

flow in the fixed contact line regime, and concluded that it is highly nonlinear.

Kralchevsky et al. (1994) derived expressions for the situation of no shear

stress along the interface and normal motion to the interface. The boundary

conditions at the interface used here (eqs. (3.3), (3.4)) are relative simple

compared to the full stress balance (Hilfer, 1996). If the surface tension was

space dependent or surfactants were assumed to be present at the interface,

different boundary conditions would result (Lopez and Hirsa, 1998). Analog

to the solid-liquid term (eq. (5.10):

µl
V0

∫

Sgl

ν · (∇vl) dS =
µl
V0

∫

Sgl

∂vl
∂ν

dS (5.14)

Using the decomposition of the velocity in the surface (eq. (5.2)):

µl
V0

∫

Sgl

ν · (∇vl) dS =
µl
V0

∫

Sgl

∂

∂ν
(vlνν + vlss) dS

=
µl
V0

∫

Sgl

∂

∂ν
(vlνν) +

∂

∂ν
(vlss) dS (5.15)

The two terms in the integral cancel for a stationary interface. However, if a

surfactant was present, this would not necessarily be the case (Bisperink, 1997;

Lopez and Hirsa, 1998). For a non-stationary interface undergoing dilatation

it is assumed that the dilatation is mainly in the direction of ν and that ν

is (nearly) perpendicular to the length direction of the corner. Dropping the

second term because of the last assumption:

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ µl
V0

∫

Sgl

∂

∂ν
(vlνν) dS

≈ µl
V0

∫

lg

∫

Lgl

∂

∂ν
(vlνν) dL dxc (5.16)

The factor vlν is related to the change of the radius of the gas-liquid interface

(Chen et al., 2000). It describes a “source of surface area” due to normal
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Figure 5.1: Schematic view of surface expansion, Lgl is unexpanded

cross sectional surface and Lgl+∆Lgl expanded cross sectional surface;

vectors indicate direction of ν and vlνν.

flow to the surface. Figure 5.1 shows the directions of ν and the change of

the gas-liquid interface in a two-dimensional cross section. Chen et al. (2000)

expressed vlν as:

vlν = −∂r

∂t
(5.17)

The corner cross sectional contribution is modeled as:

∫

Lgl

∂

∂ν
(vlνν) dL ≈ −N∂fLgl

r

∂t
(5.18)

whereby the factor fLgl
accounts for the length of Lgl, and N is a unit vector

in the direction of vD. Using equations (5.18) and (4.19) in equation (5.16):

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

∫

lg

∂Lgl
∂t

dxc (5.19)

The above integral containing
∫

lg

∂Lgl

∂t dxc describes the change of liquid gas

surface area inside an averaging volume, and could be worked out in terms of

surface area. We choose to work in terms of the corner cross sectional area

of liquid, Ac. This results in a nonlinear relation in terms of liquid volume
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(see eq. 4.24). The advantage is that no surface area is introduced in the

macroscopic equations. If it were introduced, surface area would be another

variable to be specified and measured (criterion IV, p. 29). Expressing Lgl in
Ac (eqs. (4.19), (4.22)) and simplifying:

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

∫

lg

fLgl√
fA

∂
√
Ac

∂t
dxc (5.20)

Ac is split in an average part and the deviations (analogous to eq. (2.48), but

in one dimension along the pore only):

Ac = 〈Ac〉+ Ȧc (5.21)

After substitution of equation (5.21), equation (5.20) becomes:

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

∫

lg

fLgl√
fA

∂
√

〈Ac〉+ Ȧc

∂t
dxc (5.22)

Changing temporal differentiation and spatial integration, because lg is inde-

pendent of time:

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

fLgl√
fA

∂

∂t

∫

lg

√

〈Ac〉+ Ȧc dxc (5.23)

Expanding the square root term in a series:

µl
V0

∫

Sgl

ν · (∇vl) dS

≈ − µl
V0
N

fLgl√
fA

∂

∂t







√

〈Ac〉
∫

lg

(1 +
1

2

Ȧc

〈Ac〉
− 1

8

Ȧ2c
〈Ac〉2

+ . . .) dxc






(5.24)

Integrating the first two terms:

µl
V0

∫

Sgl

ν · (∇vl) dS

≈ − µl
V0
N

fLgl√
fA

∂

∂t







√

〈Ac〉






lg + 0 +

∫

lg

(−1

8

Ȧ2c
〈Ac〉2

+ . . .) dxc












(5.25)
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Dropping higher order terms, which in essence is a linearization:

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

fLgl√
fA

∂

∂t

[

√

〈Ac〉lg
]

(5.26)

Using 〈Ac〉 = 2Vl/(lgbj):

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

fLgl√
fA

∂

∂t

[√

2Vl
lgbj

lg

]

(5.27)

Using eqs. (2.39) and (2.40):

µl
V0

∫

Sgl

ν · (∇vl) dS ≈ − µl
V0
N

fLgl√
fA

∂

∂t

[
√

2εnlV0lg
bj

]

≈ − µl√
2V0

N
fLgl√
fA

√

V0
√

lg
1√

εnlbj

∂εnl
∂t

(5.28)

As a result of the above closure, the left hand side of equation (5.9), combining

equations (5.12), and (5.28) becomes:

µl
V0

∫

Sslg

ν · (∇vl) dS = −
2µl f

2 fA l2g

εnl d Fv sin
2(α) V0bj

vD

−N µl√
2V0

fLgl√
fA

√

V0
√

lg
1√

εnlbj

∂εnl
∂t

(5.29)

These terms model the viscous effects in two-phase flow. The first term is due

to the shear stress along the solid-liquid surface and the second term describes

effects due to surface dilatation in unsteady flow.

5.3 Closure of the Pressure Term

In this section the liquid pressure term (eq. 3.22) is rewritten using the RUC

model from chapter 4. The liquid pressure is defined in the liquid only, and as
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such averaging is done in the liquid phase:

〈∇pl〉l =
1

Vl

∫

Vl

∇pl dV (5.30)

=
1

Vl

∫

lg

∫

Ac

N
lg
d

∂pl
∂xc

dS dxc (5.31)

withN a unit vector. A change of coordinate system in the direction of the cor-

ner was done. This change of coordinate system in a corner was approximated

by:

∇pl =
∂xc
∂x

∂pl
∂xc
≈ N

∆xc
∆x

∂pl
∂xc

= N
lg
d

∂pl
∂xc

(5.32)

whereby the gradient is in the direction along the pore and ∂xc
∂x is the Jacobian.

Due to the assumptions made, pl is constant at any cross section in a pore,

and can be directly integrated over Ac:

〈∇pl〉l = N
lg
Vld

∫

lg

Ac
∂pl
∂xc

dxc (5.33)

Using eqs. (4.22) and (4.23):

〈∇pl〉l = N
fAγ2gllg

Vld

∫

lg

1

p2l

∂pl
∂xc

dxc (5.34)

= N
fAγ2gllg

Vld

∫

lg

−∂p−1l
∂xc

dxc (5.35)

The above expression can be directly integrated along the length direction of

the corner:

〈∇pl〉l = −N
fAγ2gllg

Vld
(
1

p1
− 1

p0
) (5.36)

This expression is further used for the liquid pressure term. It can be written

in more familiar notation as:

〈∇pl〉l = N
fAγ2gllg

Vl
1

p0p1

p1 − p0
d

(5.37)
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In order to be compatible with the rest of the momentum balance, the ex-

pression for the liquid pressure term needs to be written in a form which is

valid over V0 and not only Vl. Use is made of the volume averaging rule

〈Ψ〉 = εnl〈Ψ〉i (Crapiste et al., 1986). The above equation was averaged along

one corner. In order to assemble it for the RUC model, taking into account

the number of pores in an RUC, j, and factor b:

1

V0

∫

V0

∇pl dV = −Nεnl
fAγ2gllgbj

2Vld
(
1

p1
− 1

p0
) (5.38)

5.4 Boundary and Initial Conditions on the

Macroscale

The boundary conditions which arise for the pressure on the macroscale are

simply p0 and p1. The time dependent terms entering the closure also re-

quire additional initial conditions, which have no analog in the traditional

Buckingham-Darcy type equations. The boundary and initial conditions are

given by:

nl(t = t0) = n0l (5.39)

nl(x = x0, x1) = nlx0,1
(5.40)

p0,1(t) = p0,1 (5.41)

vD(x = x0, x1) = vDx0,1
(5.42)

5.5 The Total Averaged Equations

In this section the combined averaged equations are given in their final form.

These equations are valid on the macroscopic scale and contain only macro-

scopic variables. In this form they are further analyzed and used in chapter

6. Rewriting equation (3.28) using equation (4.53) gives the macroscopic mass

balance equation:

∇ · vD = −∂εnl
∂t

(5.43)
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The momentum balance equation (eq. (3.29)) becomes, using equations (4.53),

(5.8), (5.29), (5.38) and (5.8):

−εnlρlg + µl [−∇(∇ · vD) +∇× (∇× vD)]

−εnl
fAγ2gllgbj

2Vld
N(

1

p1
− 1

p0
) = −

2µl f
2 fA l2g

εnl d Fv sin
2(α) V0bj

vD

− µl√
2V0

fLgl√
fA

√

V0
√

lg
1√

εnlbj
N

∂εnl
∂t

−2µllg
dbj

∇ · [(∇nl)
1

nl
vD] (5.44)

The above equations contain microscopic geometric parameters. These can be

eliminated by using the RUC relations from chapter 4. Using a simpler form

with:

−εnlρlg + µl [−∇(∇ · vD) +∇× (∇× vD)]

−c1 N(
1

p1
− 1

p0
)

= −c2

nl
vD −

c3

n
1/2
l

N
∂εnl
∂t
− c4 ∇ · [(∇nl)

1

nl
vD] (5.45)

With c1, c2, c3 and c4 given by:

c1 =
fAγ2gllgbj

2d4
(5.46)

c2 =
2µl f

2 fA l2g

ε d4 Fv sin
2(α) bj

(5.47)

c3 =
µlfLgl

l
1/2
g√

2d3/2f
1/2
A ε1/2b1/2j1/2

(5.48)

c4 =
2µllg
dbj

(5.49)

The mass balance (eq. (5.43)) could be used to further rewrite equation (5.45),

and terms containing ∂εnl
∂t would arise. This is not done here in order to

facilitate the analysis in chapter 6. Equations (5.45) will be further analyzed in

chapter 6, where they are compared to the Buckingham-Darcy type equations

and to an experiment.
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For single-phase flow and standard averaging of the pressure term (du Plessis

and Diedericks, 1997), the momentum balance becomes:

− ερlg + ε∇〈pl〉l + µl∇× (∇× vD) = −
µl fRe Ap l2g
2ε d4 r2hbj

vD (5.50)

whereby it is assumed that in single-phase flow an average liquid pressure is

defined.

There are still microscopic geometric parameters left in the averaged momen-

tum equations: a, b, j. The handling of these will be explained in chapter 6.

The parameters f , fA, lg, d, sinα, and fLgl
are determined using the expres-

sions from chapter 4, using the macroscopic parameters ε and rc or plc.

5.6 Discussion

Starting from the pore scale equations (eqs. (2.38)), and using the assumptions

of section 3.2, macroscale equations were derived. The main assumptions were:

relative slow flow with no inertial effects, quasi steady-state flow at the pore

scale, no dynamic contact line effects, and capillarity as the main driving force.

The equations were written with the fraction of liquid inside the pores, nl, as

a main variable. Macroscopic surface area was expressed in terms of nl also,

yielding equations (5.45). The pressure term was directly integrated and N

was added to express the direction of the macroscopic pressure gradient. In

essence this integration was along one space dimension only. The main dif-

ference between equations (5.45) and the traditional Buckingham-Darcy type

equations is in the pressure term. Due to the direct integration of the micro-

scopic pressure gradient, no macroscopic pressure gradient arises directly. The

integrated pressure term is not really an volume averaged term, but a macro-

scopic term describing the influence of a difference in liquid pressure across an

RUC. The other terms in equations (5.45) are volume averaged terms, com-

parable to the traditional equations and volume averaging work by Whitaker

(1986b). The integrated pressure term is a nonlocal term, in contrast with the

traditional equations, and depends on the averaging length scale through the

distance between p0 and p1. No factor like the conductivity arises directly, but

instead factors arising from the RUC model account for the conductivity. If p0
(or p1) tend to become very negative, flow still can occur and is driven by the

other less negative pressure. In the traditional equations, the gradient of liquid

pressure would then tend to become very large, and the conductivity would
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tend to become extremely small, resulting in a behavior of the equations crit-

ically dependent on the conductivity parameterization (Fuentes et al., 1992).

The proposed equations also contain dynamic terms which were derived using

closure assumptions. These are not present in the traditional equations, and

are often modeled heuristically (Stauffer, 1977). Due to the exactly defined

RUC, the order of magnitude of these macroscopic terms can be estimated

(sec. 6.3.4).
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6 Comparison of the Macroscale

Equations with the Buckingham-Darcy

Equation

6.1 Introduction

The goal of this chapter is to analyze and compare the equations derived

in chapter 5 with the traditional Buckingham-Darcy (BD) type equations and

the dynamic capillary pressure model used by Hassanizadeh et al. (2002). Fur-

thermore a numerical comparison will be made with an experiment by Stauffer

(1977). First an order of magnitude analysis is conducted on equations (5.45),

followed by analytical approximations to compare the structure of these equa-

tions to the BD approach. Then a numerical simulation of an experiment is

done on the basis of a data set from Stauffer (1977). In this chapter analysis

is only conducted with respect to drainage, implying a contact angle θ = 0

(assumption 11, p. 35).

6.2 Order of Magnitude Analysis of the Aver-

aged Equation

Equations (5.45) are the full macroscale equations for the momentum balance

in unsaturated flow. In this section they are made dimensionless using the

notation in table 6.1. Because nl is already dimensionless, n∗l is defined as a

place-holder of O(1). p1 and p0 are not variables in the momentum balance

equations. They are treated as “constant” boundary conditions, and written as

P and P +∆P . Using the above notation yields for the mass balance equation

(eq. 5.43):

εNl

T

∂n∗l
∂t∗

= −V

L

∂v∗

∂x∗
(6.1)

75



76 CHAPTER 6. COMPARISON BUCKINGHAM-DARCY

x∗ = x
L z∗ = z

L

t∗ = t
T = tV

εNlL
n∗l = nl

Nl

g = g∇z v∗ = vD
V

Table 6.1: Notation for variables in dimensionless equations.

Dropping the differential terms, which are of O(1), the following time scale

can be estimated:

T =
εNlL

V
(6.2)

This estimated time scale is already used in table 6.1. The dimensionless mo-

mentum balance equation becomes by normalizing with respect to the pressure

term:

1 = − c2 V

Nlc1(
1

P+∆P − 1
P )

v∗ − c3 V

LN
1/2
l c1 ( 1

P+∆P − 1
P )

∂n∗l
∂t∗

+
εNlρlg

c1 ( 1
P+∆P − 1

P )

∂

∂z∗
z∗ − µl

V

L2c1 ( 1
P+∆P − 1

P )

∗
[

− ∂

∂x∗
(

∂

∂x∗
· v∗) + ∂

∂x∗
× (

∂

∂x∗
× v∗)

]

− c4 V

c1 Ld( 1
P+∆P − 1

P )

∂

∂z∗
·
[

∂n∗l
∂z∗

1

n∗l
v∗d

]

(6.3)

whereby the terms were normalized with the factor (c1 d
L (

1
P+∆P − 1

P ))−1, yield-

ing on the left hand side a term coming fromN of magnitude unity. To estimate

the order of magnitude of the other terms, table 6.2 lists the magnitudes used.

These values were taken from the data of experiment IIa by Stauffer (1977).

plc corresponds to an air entry value of h = −0.32 m. To estimate c1, c2, c3,

and c4, the RUC relations from chapter 4 are employed. If the above values

are used in equation (6.3):

1 ≈ 1.6 ∗ 10−1 v∗D − 1.6 ∗ 10−5 ∂n∗l
∂t∗

+ 1.0 ∗ 100 ∂

∂z∗
z∗

−1.6 ∗ 10−7

[

∂

∂x∗
(

∂

∂x∗
· v∗D)−

∂

∂x∗
× (

∂

∂x∗
× v∗D)

]

+1.7 ∗ 10−7 ∂

∂z∗
·
[

∂n∗l
∂z∗

1

n∗l
v∗d

]

(6.4)
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ε = 0.336 m3/m3 γgl = 0.07 kg/s2

ρl = 998 kg/m3 g = 9.81 m/s2

L = 0.02 m V = 5 ∗ 10−5 m/s

µl = 0.001 kg/ms P = −5.9 ∗ 103 kg/ms2

plc = −3.1 ∗ 103 kg/ms2 ∆P = −200 kg/ms2

Nl = 0.24 – a = 1 –

j = 2 – b = 2 –

Table 6.2: Magnitude of quantities used in scaling equations (6.3) and

in simulations.

From equation (6.4) it can be easily seen that the most important terms are the

term coming from N on the left hand side, which stands for the pressure term,

the gravity term and the velocity term. Keeping only these three terms would

lead to a BD like description of the flow equations. The order of magnitude

of these terms is consistent with traditional unsaturated flow modeling, where

in Darcy’s law only gravitational and pressure effects are used to describe flow

velocity. It is not surprising that the dynamic terms are small, as they are

not widely used and, in general, good agreement with experiments is obtained

without them.

6.3 Further Analysis

As explained in section 3.4.2, it is assumed that tensiometers directly measure

p0,1 and not 〈pl〉l. With these two measurements the pressure term in equations

(5.45) can be directly evaluated. One important property of equations (5.45):

−εnlρlg + µl [−∇(∇ · vD) +∇× (∇× vD)]

−c1 N(
1

p1
− 1

p0
)

= −c2

nl
vD −

c3

n
1/2
l

N
∂εnl
∂t
− c4 ∇ · [(∇nl)

1

nl
vD]

is that if p0 or p1 tends to very large negative values (i.e. the porous medium

becomes dry), and a wetting or drying front develops, flow can still happen

and is driven by the other pressure. This behavior is analogous to the behavior

of the corner flow equation and allows “autonomous” spreading in dry soils.

It may seem paradoxical at first sight that the liquid flow can be written
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depending on 1
p1
− 1

p0
and not depending on ∇〈pl〉l, but the following example

should clarify this: If a soil is dry, the infiltration is controlled by the pressure

in the water phase behind the wetting front. This front moves and is not

directly dependent on the fact that “no water” is present in the dry soil. If

the soil is already moist, the wetter part (large 1
p0,1

) of the soil “controls” the

movement of the liquid to a larger degree than the drier part (small 1
p0,1

). This

is in contrast to the BD equations, where ∇〈pl〉l tends to become extremely

large and the constitutive relation kr(〈pl〉l) must become extremely small in

order to keep the spreading of the liquid phase within limits. It must be kept

in mind that both the BD equation and equation (5.45) are strictly not valid

near a saturation front, because the volume averaging length scale constraints

are not satisfied.

In order to get a better understanding of the averaged momentum balance

equations, the relatively small terms are dropped and an analysis is conducted

for one-dimensional flow. One-dimensional flow is chosen, because it is most

relevant for pressure cell and column experiments, and it allows simplifica-

tion of the averaged momentum balance equations. In one-dimensional form,

equations (5.45) become:

−εnlρlg − µl
∂

∂z

[

∂

∂z
vD

]

− c1 (
1

p1
− 1

p0
)

= −c2

nl
vD −

εc3

n
1/2
l

∂nl
∂t
− c4

∂

∂z

[

∂nl
∂z

1

nl
vD

]

(6.5)

Dropping the relatively small term containing c4:

−εnlρlg − c1 (
1

p1
− 1

p0
)− µl

∂

∂z

[

∂

∂z
vD

]

= −c2

nl
vD −

εc3

n
1/2
l

∂nl
∂t

(6.6)

Substituting the averaged mass balance (eq. (5.43)) in the divergence term and

solving for vD:

vD =
c1nl
c2

(
1

p1
− 1

p0
) +

εn2l
c2

ρlg −
µlεnl
c2

∂

∂z

∂nl
∂t

−c3 εn
1/2
l

c2

∂nl
∂t

(6.7)
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The above equation has two dynamic terms: −µlεnl
c2

∂
∂z

∂nl
∂t and − c3 εn

1/2

l

c2
∂nl
∂t .

These two terms are further analyzed in section 6.3.4. Here, these terms are

dropped because of their relative small magnitude:

vD =
c1 nl
c2

(
1

p1
− 1

p0
) +

εn2l
c2

ρlg (6.8)

Equation (6.8) is not a differential equation. It can be described as an algebraic

equation, relating vD to the boundary pressures p0 and p1. This equation is

length scale dependent through the pressure term. Implicit in this term is that

the distance between p0 and p1 must be given. It is illustrative to compare

equation (6.8) to the one-dimensional BD type equation:

vD = −kDkr(〈pl〉l)
ρlg

∂〈pl〉l
∂z

+ kDkr(〈pl〉l) (6.9)

Equation (6.8) can be rearranged to yield:

vD = − c1nld

c2p1p0

p1 − p0
d

+
εn2l
c2

ρlg (6.10)

In order to approximately compare equations (6.9) and (6.10), the following

approximations are used:

lim
p0,1→pla,d→0

p1 − p0
d

=
∂pla
∂z

(6.11)

and:

lim
p0,1→pla

nl(p0, p1) = nl(p
l
a) (6.12)

whereby nl is defined by equation (4.49) and pla is an “average” liquid pressure.

These approximations are similar to the approximations used by Whitaker

(1986a) to define pressure measurements. In effect Whitaker (1986a) assumed

that pressure measurements are point measurements, and that two of these

point measurements allow the calculation of ∇〈pl〉l. The assumption of point

measurements is at odds with the typical dimensions of a tensiometer, which

are in the order of an averaging volume. Equation (6.10) becomes with ap-

proximations (6.11) and (6.12):

vD = −c1 nld

c2 pla
2

∂

∂z
pla +

εn2l
c2

ρlg (6.13)
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Using for nl equation(4.50) and equation (5.46) for c1:

vD = − εn2l
c2

∂

∂z
pla +

εn2l
c2

ρlg (6.14)

Comparing equations (6.9) and (6.14), it is possible to identify the functional

form of k(〈pl〉l) as:

kDkr(〈pl〉l)
ρlg

≈ εn2l
c2

=
FvfAb3γ4glj

3 sin2(α)

8µld2f2

(

1

pla

)4

(6.15)

whereby equations (4.50) and (5.47) where used. This functional form is similar

to a Brooks-Corey expression for kr (Stauffer, 1977):

kr ∼
(

1

pla

)3+2λ

(6.16)

with λ the Brooks-Corey coefficient given as λ = 2/3.

6.3.1 Stationary solution

In this section the behavior of equation (6.7) is analyzed for the situation that

the velocity is zero and a static pressure distribution develops in the porous

medium. The BD equation predicts a linear pressure profile versus height

above the saturated-unsaturated interface:

∂〈pl〉l
∂z

= −ρlg (6.17)

which can be directly integrated:

〈pl〉l
ρlg

= −z (6.18)

However Gray and Hassanizadeh (1991a, p. 1850) in their article “Paradoxes

and Realities in Unsaturated Flow Theory”, predicted that in unsaturated flow

the above statement is only approximately correct. They give two reasons for

this. The first reason is that the density of water is not truly constant. This

effect is not taken into account here, as it is assumed that the density is

constant (assumption 1, p. 34). The second reason is related to the capillary
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Figure 6.1: 〈pl〉l/ρlg vs. z (eq. (6.20)).

forces in the porous medium. Gray and Hassanizadeh (1991a) assume that

the capillary forces “hold” an extra amount of water in the porous medium,

and that because of this the pressure profile is not given by equation (6.18).

If vD = 0, equation (6.7) or (6.8) becomes:

0 =
c1nl
c2

(
1

p1
− 1

p0
) +

εn2l
c2

ρlg (6.19)

When using the RUC relations for c1, c2 and nl from chapter 4, the above

equation becomes:

p1 − p0
d

= −ρlg
3 (p40 + p1p

3
0 + p20p

2
1 + p0p

3
1 + p41)

5 (p20 + p0p1 + p21)p0p1
(6.20)

Figure 6.1 shows the pressure profile predicted by equation (6.20), calculated

for a water table ≈ 3 m deep in a soil. This figure shows that the predicted

pressure profile is virtually identical to the profile predicted by equation (6.18).

However a careful analysis of the relative difference:

∆z −∆
p0,1

ρg

∆z
(6.21)
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Figure 6.2: Relative difference of stationary pressure profile; eq. (6.21)

vs. z.

shows that the pressure profile predicted by equation (6.20) is not exactly a

straight line. Figure 6.2 shows the relative difference (eq. (6.21)) as a function

of z. It is obvious that the deviations from the linear profile are quite small

and can be ignored for practical purposes. Nonetheless, figure 6.2 shows that

the predicted profile is less than hydrostatic, as conjectured by Gray and Has-

sanizadeh (1991a). In effect more liquid is held in the porous medium than

predicted by equation (6.17). At larger water contents (less negative liquid

pressures) this effect is more pronounced. To the authors knowledge equation

(6.20) is the first equation proposed for unsaturated porous media which shows

this behavior consistent with the work of Gray and Hassanizadeh (1991a). An

explanation for the deviation from the hydrostatic pressure profile is that the

gravity term is defined in terms of average liquid content, whereas the pressure

term is based on areal average liquid pressures per unit volume.
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6.3.2 Comparison of the averaged pressure term

As shown in appendix A, using the traditional averaging of the pressure term

yields (Whitaker, 1986b):

〈∇pl〉 = εnl∇〈pl〉l

or in one-dimensional form:

〈∂pl
∂z
〉 = εnl

∂

∂z
〈pl〉l (6.22)

The averaged pressure terms in equation (6.22) and equation (6.7) can be

compared directly:

εnl
∂

∂z
〈pl〉l : −c1( 1

p1
− 1

p0
) (6.23)

:
c1d

p0p1

p1 − p0
d

(6.24)

Using equations (4.50) and (5.46), and approximations (6.11) and (6.12):

εnl
∂

∂z
〈pl〉l : εnl

∂

∂z
pla (6.25)

The above relation shows that the traditional averaging of the pressure term

is similar to the method introduced here, if approximations (6.11) and (6.12)

are used. If during the development of the averaged pressure term in section

5.3 it was assumed that the sum of all corner liquid areas Acs is independent

of liquid pressure, the following averaging would result:

〈∇pl〉l =
1

Vl

∫

Vl

∇pl dV

=
1

Vl

∫

lg

∫

Acs

N
lg
d

∂pl
∂xc

dS dxc

= N
lg
dVl

∫

lg

Acs
∂pl
∂xc

dxc

= N
Acslg
Vl

p1 − p0
d

= N
p1 − p0

d
(6.26)
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whereby equation (5.32) was used and Acs is defined analogous to equa-

tion (4.8) as Acs = Vl
lg
. For one-dimensional flow, equation (6.22) on the

left hand side and equation (6.26) on the right hand side:

∂

∂z
〈pl〉l :

p1 − p0
d

(6.27)

If the fluid area Acs is constant along the corners in an RUC, the geometric

transformation multiplier
lg
d directly cancels and does not enter the averaged

equations as in the averaging of the pressure term in section 5.3 for unsaturated

flow (Ma and Ruth, 1993).

The factor
lg
d in the nonlocal form of the pressure term is similar to the aeros-

ity factor proposed by Ma and Ruth (1993). If change in cross-sectional liquid

area had not been taken into account during the averaging, the newly proposed

result would be even more like the traditional averaged pressure term, how-

ever, with the important difference that the newly proposed term is nonlocal,

whereas the traditional term is local.

6.3.3 Estimation of the saturated hydraulic conductivity

The RUC geometric relations developed in chapter 4 allow a direct estimation

of the saturated hydraulic conductivity. It can be evaluated using equation

5.50 as:

kd =
2ε2d4r2hbjρg

µlfReApl2g
(6.28)

fRe is given in Shah and London (1978) as:

fRe ≈ 12.3 (6.29)

Using the values from table 6.2, and the RUC relations from chapter 4:

kd = 1.3 ∗ 10−4m/s (6.30)

This value can be directly compared to the average value measured by Stauffer

(1977) for his experiment II as 2.1∗10−4 m/s. The simple RUC and flow model

of chapter 4 together with the closure for saturated flow in section 5.2 provides

an estimate of kD only using the macroscopic variables ε, plc, and the properties

µl, ρl, g, and an estimate of fRe from Shah and London (1978). The estimate

of kD is quite accurate, considered that only ε and plc were used as porous

medium parameters. This estimate compares in accuracy with more standard

methods (Carman, 1956).
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6.3.4 Comparison of the dynamic terms with Stauffer’s

model

Equation (6.7) contains two time dynamic terms: one with the divergence of

the velocity, and the other with the derivative of the liquid content. Both

originate from the microscopic viscous term. Most two-phase flow equations

have no or one dynamic term. In his dissertation Stauffer (1977) proposed a

model for a dynamic capillary pressure. This dynamic model was proposed

in order to model rapid changes in water content in his experiments. He

conjectured that the pressure in the Buckingham-Darcy equation is a dynamic

pressure and that it can be expressed as:

〈pc〉ld − 〈pc〉ls = −τ
∂nl
∂t

(6.31)

whereby subscript d indicates a dynamic pressure and subscript s indicates a

static pressure and τ a dimensionless proportionality factor. In terms of the

liquid pressure:

〈pl〉ld − 〈pl〉ls = τ
∂nl
∂t

(6.32)

with 〈pl〉ls the static volume average liquid pressure and 〈pl〉ld the dynamic

volume average liquid pressure. Stauffer (1977) indicated that τ could depend

on water content, but did not elaborate further on this. The term ∂nl
∂t is also

called a capillary relaxation factor. If equation (6.32) is used in the standard

BD equation (eq. (6.9)):

vD = −kDkr(〈pl〉ld)
ρlg

[

∂

∂z
〈pl〉ls +

∂

∂z

(

τ
∂nl
∂t

)]

+ kDkr(〈pl〉ld) (6.33)

The dynamic term was introduced ad hoc in Stauffer’s dissertation, although

he tried to find physical explanations in terms of dynamic contact angles (see

Stauffer, 1977, p. 130). It is shown here that a dynamic term of the same

form as the second term on the right hand side of equation (6.33) can be

directly derived from the Brinkman term (Brinkman, 1947, 1949) without the

introduction of a dynamic pressure. In section 3.4.2, the viscous term was

averaged, yielding a sum of terms, containing µl∇2〈vl〉. In the beginning of

section 6.3 (p. 78) this term was rewritten for one-dimensional flow together

with the mass balance as:

− µlεnl
c2

∂

∂z

∂nl
∂t

(6.34)
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The dynamic term in the dynamic BD equation (eq. (6.33)) and equation

(6.34) have the same mathematical form. Stauffer (1977) assumed that τ was

constant, and with this assumption the order of magnitude of the factor in

front of the differential can be directly compared:

kDkr(〈pl〉ld)
ρlg

τ :
µlεnl
c2

(6.35)

Stauffer speculated that τ could depend on water content, but took it as a

constant defined by1:

τ =
p2lcα

kDρlgλ
(6.36)

with α a constant, kD the saturated hydraulic conductivity, and λ the Brooks-

Corey exponent (see Stauffer, 1977, p. 128). Simplifying relation (6.35) and

using equation (6.36) and kDkr(〈pl〉ld) = kDn
3+2/λ
l (Stauffer, 1977):

n
3+2/λ
l p2lcα

ρ2l g
2λ

:
µlεnl
c2

(6.37)

using numerical values for all variables (tab. 6.2) and α ≈ 0.03, λ ≈ 6 (Stauffer,

1977):

5 ∗ 10−4n3
1
3

l : 5 ∗ 10−10nl (6.38)

As is to be expected, Stauffer’s (1977) dynamic term has a much larger mul-

tiplier than the dynamic term derived from the Brinkman term, which will be

explained later. If the Brinkman term was large, the length scale constraints

of volume averaging would be violated, and volume averaged equations would

not apply to the problem at hand (Whitaker, 1986a). Both terms depend on

nl, although the exponent is different. Figure 6.3 shows the behavior of both

terms dependent on nl. At low nl, both terms can have an equal magnitude

due to the power of nl on the left hand side of relation (6.38).

Stauffer’s (1977) assessment of the dynamic term is based on his column ex-

periments. The experimental geometry had multiple tensiometers at distances

1In Stauffer (1978) a slightly different definition of τ is used:

τ = ε τ(Stauffer, 1978)
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Figure 6.3: Prefactors of dynamic terms, eq. (6.38) vs. nl; solid line

left hand side of eq. (6.38), dashed line right hand side of eq. (6.38).

of ≈ 10 cm, and in between water content measurement locations (fig. 6.5).

The water content measurement and tensiometers were thus not at the same

locations but at ≈ 5 cm distances. The time interval of the water content

measurements was in the order of minutes for repeated measurements at the

same location. This raises the question if these measurements can be the basis

for an assessment of the local dynamic terms. The experimental setup implies

a dependence of ∂nl
∂t on the distance of the tensiometer locations and the mea-

surement frequency, but it is difficult to derive from these experiments a local

dependence of 〈pl〉l on ∂εnl
∂t . Another issue related to the estimation of the dy-

namic term of Stauffer (1977) is related to the saturation front. Stauffer (1977)

used measurements close to the front for estimation, but it is questionable if

his flow equation parameterizations are valid near the saturation front.

The second dynamic term in equation (6.7):

− c3 εn
1/2
l

c2

∂nl
∂t

(6.39)
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Figure 6.4: Prefactor of dynamic term, eq. (6.39) vs. nl.

comes into the equations due to the deformation of gas-liquid interface on the

microscopic scale. This term is a novel term describing dynamic effects in

unsaturated flow in porous media. It depends only on the change of liquid

saturation in time and is not dependent on spatial gradients. Figure 6.4 shows

the factor before the differential against nl. In effect it can be seen as a

hysteresis term. During imhibition it reduces the volume average velocity,

whereas during drainage it enlarges the volume average velocity. This effect

is due to the change in liquid saturation in an averaging volume. Equation

(6.39) can not be directly compared to Stauffer’s dynamic term, because it has

a different mathematical form.

One dynamic term was discarded in the closure in section 5.1, because it was

assumed to be very small. The discarded term would might have a mathemat-

ical form similar to Stauffer’s term, however it would be much smaller.

Both the dynamic terms in equation (6.7) and the dynamic term from Stauf-

fer (1977) originate from the volume averaged stress tensor. In the work of

Hassanizadeh and Gray (1980), from thermodynamics, they proposed that the

volume average stress tensor could depend on a multitude of variables, and as

such the dynamic terms used in this dissertation do not contradict the work
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of Hassanizadeh and Gray (1980). It is not expected that the dynamic terms

normally play an important role in flow in unsaturated porous media, however

near a saturation front these terms could become important.

6.4 Comparison with Experiment

After the analytical analysis in the previous sections, in this section the nu-

merical solution of equation (6.8) is compared to an experiment by Stauffer

(1977). Equation (6.8) is chosen because it does not contain the dynamic terms

and the other comparably small term. If a numerical solution of equation (6.7)

with the dynamic terms was the goal, a relation between p0,1 and nl had to

be found, whereby nl = nl(p0,1(t), t). In section 4.4.2 an expression for nl
(eq. (4.49)) was found, based on quasi-steady flow in a corner. In principle a

dynamic expression for nl could be found, but this would make the local flow

model much more involved. As the order of magnitude analysis in section 6.2

already indicated, it is not expected that dynamic terms play an important

role in unsaturated flow as studied here. This is the reason why a quasi-steady

calculation procedure is used. Stauffer (1977) used the same experiment to

estimate his proposed dynamic term (see section 6.3.4 for a discussion).

6.4.1 Description of experiment

The porous medium employed by Stauffer is unconsolidated sand with an aver-

age porosity of 0.336. The mean particle diameter of the sand is approximately

3 ∗ 10−4 m. It is assumed that the liquid (water) is completely wetting the

sand and that the contact angle θ = 0. The experimental unit consists of a

vertical sand column in a cylinder of diameter 0.045 m and length 0.638 m.

At the top of the column there is no liquid inflow or outflow and atmospheric

pressure, while the bottom of the column drains in a reservoir with a constant

level. Figure 6.5 shows schematically the geometry of the experiment.

To conduct an experiment, the sand column is completely saturated and then

allowed to drain freely. The liquid pressure is measured with tensiometers

along the column and water content is measured with a gamma ray absorption

technique. Additionally the air pressure is measured throughout the column

in order to detect effects of pressure variation in the gas phase and its possible

influence on the liquid movement. The outflow is collected and weighted on

a digital scale. Here the data from experiment IIa are used to compare with
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Figure 6.5: Geometry of experimental setup (exp. IIa, Stauffer (1977)),

showing locations of measurements, distances are from bottom of col-

umn.

the numerical simulation. This experiment was chosen because the data set

was the most complete. An important property of this experiment is the high

speed of the saturation front when drainage starts. The speed was up to 180

m/d or 2.15 ∗ 10−3 m/s. The movement of the front controls to a large degree

the outflow dynamics. Data relating to the parameters in the experiment are

given in table 6.2.

6.4.2 Calculations

For the simulations we use the following discretised form of equation (6.8):

v
i+1/2
D =

c1

c2

d

∆x
n
i+1/2
l (

1

pi+1
− 1

pi
) +

ερlg

c2
n
i+1/2
l

2
(6.40)

whereby the superscript containing i indicates the node location and d
∆x is a

discretisation factor to adjust the length scale implicit in the equations through

p0,1 to the numerical discretisation step ∆x. This discretisation factor was used

to asses the effect of different discretisation length scales on the simulations.

It was found that 2 cm is a reasonable length scale, concerning the tradeoff

between calculation time and change of the predicted outflow between different
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run nr.
plc
ρlg

a b j calculated

outflow (g)

1 -0.32 1 1 1 266.29

2 -0.32 1 2 1 252.63

3 -0.32 1 1 2 253.65

4 -0.32 1 2 2 245.52

5 -0.32 0.7 1 1 284.07

6 -0.32 0.7 2 1 263.73

7 -0.32 0.7 1 2 267.01

8 -0.32 0.7 2 2 252.02

measured

in experiment: -0.32 - - - 273.79

Table 6.3: Combinations of parameters used in simulations and calcu-

lated outflow (g) at the end of the experiment.

discretisation lengths. The mass balance is explicitly discretised in time as:

v
i+1/2
D − vi−1/2D

∆x
= −εnl

i
t+∆t − nlt

∆t

i

(6.41)

whereby ∆t is the time step. Parameters c1 and c2 were calculated from

the data of experiment IIa by Stauffer (1977) using the RUC relations from

chapter 4 (see also table 6.3). The system of equations (6.40) and (6.41) is

set up for the whole column and solved sequentially. The simulations were

run with explicit time stepping, the time step was adjusted dynamically by

a Courant number criterion. The simulation code is written in the XLisp-

Stat programming language (Tierney, 1990). As equation (6.40) is only valid

for unsaturated flow, the position of the saturated-unsaturated interface was

dynamically tracked. Nodes which became unsaturated were added to the

simulation domain. Effectively, only the unsaturated part of the domain is

simulated by equations (6.40) and (6.41), and the position of the interface be-

tween saturated and unsaturated flow is used as a bottom boundary condition

for the simulation. The top boundary condition is given by a no-flow condi-

tion. The parameters c1 and c2 contain the geometric parameters a, b and j

defined in chapter 4. In order to asses their importance, simulations were done

for different values of these parameters. Table 6.3 lists the combinations and

shows the simulated outflow compared to the measured outflow at the end of

the experiment.
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Figure 6.6: Measured outflow (cross symbols) and simulations with

parameter combinations from table 6.3 (lines) vs. time.

6.4.3 Calculation results

Figure 6.6 shows the simulated outflow for all combinations of parameters

in table 6.3, together with the measured outflow. It can be seen directly

that the choice of parameters a, b, j influences the outflow curves, but that all

parameter combinations give a reasonable description of the outflow. It is clear

that through optimization a better fit could be obtained, but this was not the

goal. It is shown that the parameter range allows satisfactory simulation of the

outflow. For these simulations the only parameters which need to be measured

for a specific porous medium are ε and plc, and these were directly taken from

the data of Stauffer (1977). No other parameters were needed, except the

fluid properties µl, γgl and ρl. In view of this the simulation results are quite

satisfactory. After about 2000 s the simulated outflow increases more than

the measured outflow. This indicates that the resistance parameterization

or the simple Young-Laplace model for the liquid pressure overestimate the

unsaturated hydraulic conductivity. Figure 6.7 shows profiles of nl at different

time steps during the simulation for run number 1 and a measured saturation

profile at ≈ 22000 s. The profiles show the typical behavior expected from
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Figure 6.7: Simulated profiles of saturation for run nr. 1; line with +

signs: measured profile at ≈ 22000 s.

saturation profiles in drainage, although the simulation results over predict

the drainage in the top of the column. At the end of the experiment, the

predicted outflow is close to the measured outflow. The largest deviation of

the simulated outflow from the measured outflow was for run nr. 4, with about

10% deviation (table 6.3). Run nr. 7 predicted the total outflow best, with

a deviation of only ≈ 2%. Overall the simulated behavior of equation (6.8)

shows the behavior of the saturation and outflow in reasonable agreement with

the measured data. At the end of the simulations predicted pressure profiles

were close to hydrostatic, as expected from the outflow curves. The measured

pressure profiles of Stauffer (1977) show no hydrostatic profile at the end of

the experiment, although during the experiment a nearly hydrostatic pressure

profile was measured.
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7 Discussion, Recommendations and

Conclusions

In this chapter a discussion of equations (5.45) and the mass balance equation

(5.43) derived in chapter 5 is given. Together with the comparison in chapter

6, strengths and weaknesses of the above equations are discussed. First the

general properties and the averaged pressure term are discussed, followed by

a discussion of the dynamic terms. Then the drawbacks are explained and

recommendations for possible extensions are given. Finally recommendations

and general conclusions will be stated.

7.1 Discussion

In section 5.5 equations (5.45) were proposed as the averaged momentum bal-

ance equations on the macroscale. These equations differ from the traditional

volume averaged equations in the pressure term, the dynamic terms and in

the form chosen for the Brinkman term. In chapter 6 these were simplified

to one-dimensional form (eq. (6.5)) and relatively small terms were neglected.

The resulting equation (6.8) was compared to the traditional Buckingham-

Darcy equation and to an experiment. The simplified one-dimensional form of

the averaged equations (6.8) is in an algebraic equation. This is the result of

the direct integration of the pressure term and effectively removes the spatial

derivative from this term. The fact that the momentum balance equations

become nonlocal is caused by the direct effect of the boundary conditions on

the flow. A similar effect of the boundary conditions is also observed in up-

scaling from the core to larger scales, e.g. in renormalization calculations in

unsaturated flow (Hoffmann, 2000a). The relation between liquid saturation

and boundary pressures was established for quasi-steady flow only, which im-

plies that the combination of equations (5.45)and (4.49) can only be solved

for quasi-steady flow. The volume averaged mass balance equation derived in

95



96 CHAPTER 7. DISCUSSION

this dissertation is identical to the traditional volume averaged mass balance

equation.

Naturally the question arises: Can the averaged momentum balance equations

be called ”truly”volume averaged equations? Two views are possible:

• Yes, because each term in the equations is averaged over an averaging

volume.

• No, because the averaged pressure term contains area averaged pres-

sures. These quantities are therefor not truly volume averaged quanti-

ties. Moreover this term is nonlocal and length scale dependent. In the

traditional equations the length scale does not enter directly into the

equations.

Another point of discussion is whether equations (5.45) are truly three-dimen-

sional equations. The mathematical notation is in three-dimensional vector

form, but the pressure term and one dynamic term were averaged along a

corner inside a Representative Unit Cell along one dimension only. On the

macroscale these terms contain a unit vector, which is a notational help in

making these terms three-dimensional.

7.1.1 Pressure term

As already explained in chapter 6, the pressure term has a different form than

the traditional volume averaged pressure term. This is the main difference

between equations (5.45) and the traditional volume averaged equations. The

precise form of this difference is due to the interpretation of the pressure mea-

surement made by tensiometers and in pressure cells. Hassanizadeh and Gray

(1979a) state that “The average value of a microscopic quantity must be the

same function that is most widely observed and measured in a field situation

or in the laboratory” (Criterion IV (p. 29)). Here the pressure measurement

is interpreted as an area average measurement and not a volume average mea-

surement. If this interpretation is valid, the principle of areal averaging of the

pressure term developed in section 5.3 is valid. The areal averaging directly

uses equation (4.23) to express liquid area in liquid pressure. This is a simplifi-

cation of reality. A better representation of the relation between liquid area in

a corner and liquid pressure could improve the averaged pressure term greatly.

Extensions could include a more realistic pore geometry, taking into account

surface roughness, or using a relation derived from measurements. In effect
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the relation between liquid area in a corner and and liquid pressure could be

seen as a constitutive relation.

The form of the averaged pressure term shows that the flow of liquid in unsat-

urated porous media can be written proportional to 1
p1
− 1

p0
. In principle the

flow is still driven by the gradients in liquid pressure, but due to the nonlinear

coupling between capillary forces and liquid pressure gradient, the apparent

driving force is proportional to 1
p1
− 1

p0
. This form reduces the need to in-

troduce the highly nonlinear kr(〈pl〉l) relationship (eqs. (6.15) and (6.16))

which is used in the traditional models for flow in unsaturated porous media.

A related property is that the difference 1
p1
− 1

p0
becomes smaller as p0,1 be-

come more negative, i.e. the porous medium becomes drier. This reduces the

effective driving force for flow and accounts for part of the nonlinearities in

unsaturated flow.

The result obtained by averaging the pressure term is similar to the result that

would be obtained with the ”control volume method”used in fluid mechanics

(Panton, 1984). In this method the forces acting on a control volume are

calculated by summing the forces around the perimeter surface of the control

volume. In effect a similar method has been used by Hassanizadeh et al. (2002)

in their pore network simulation model. They calculated the areal average

liquid pressure at the entry and exit planes of their pore network and related

this to the volume average static capillary pressure. Hassanizadeh et al. (2002,

p. 50) state: ”a natural definition of the macroscopic capillary pressure is given

by the pressure difference associated with the boundary fluid reservoirs”. The

result is a nonlocal definition of the capillary pressure term, which depends

on the averaging length scale (the pore network length scale). In their work

Hassanizadeh et al. (2002) apparently did not directly take into account the

length scale dependence of their nonlocal definition of capillary pressure.

The nonlocal pressure definition avoids the need to presuppose that liquid flow

is driven by the gradient of the average liquid pressure (Whitaker, 1986b).

By its definition the pressure term of section 5.3 represents a static liquid

pressure, although the pressure at the entry and exit planes can depend on

time. The areal average pressure definition avoids the need to use a dynamic

liquid pressure to account for dynamic effects.

7.1.2 Dynamic terms

The two dynamic terms in equation (5.45) containing ∂εnl
∂t describe the effect

of volume averaging on the flow dynamics. On the microscale equations (2.38)
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describe steady flow, but due to a change in liquid saturation in the averaging

volume, the dynamic terms directly enter the macroscopic mass and momen-

tum balance equations. In the momentum balance equations these terms orig-

inate from the microscopic viscous term and they act as a ”momentum sink”.

The first dynamic term µε ∂
∂x

∂nl
∂t is part of the macroscopic Brinkman term.

As shown in the order of magnitude analysis in section 6.2, it is relatively small

and not expected to influence flow in unsaturated porous media significantly.

The remarkable property of this term is that it has the same mathematical

form as the dynamic term proposed by Stauffer (1977), as shown in section

6.3.4.

The second dynamic term ε c3

n
1/2

l

∂nl
∂t does not depend on the spatial derivative,

but on the temporal derivative only. It was derived from the surface dilatation

through direct integration and linearisation in section 5.2. It is a novel term

in the momentum balance for two-phase flow. Basically it describes the effect

of advection of liquid into the averaging volume and damps the dynamics. It

could be interpreted as a hysteresis term. This hysteresis is then only due

to the flow dynamics and has nothing to do with the traditional hysteresis

effect which is explained in terms of the ink bottle effect and contact angle

hysteresis. The interesting aspect is that the factor ε c3

n
1/2

l

becomes large as nl

becomes small. But at small nl,
∂nl
∂t is small, except near a steep wetting front.

Such a steep wetting fronts can be observed during infiltration of water into

a dry soil. But near such a steep wetting front the volume averaging length

scale constraints are not valid and thus the averaged equations are not valid.

However it must be remarked that the form of the second dynamic term is

based on assumptions and as such is not the result of a strict mathematical

derivation.

In section 6.4 the dynamic terms were not included in the simulations because

they are relatively small. An improved dynamic closure incooperating the

dynamic terms in the relationship nl(p0, p1, t) would be needed to do this.

However it is expected that the total influence of the dynamic terms is not

important in unsaturated flow in sand-like porous media. These terms could

play a role close to a wetting front, but then the volume averaging length scale

constraints are not satisfied.

7.1.3 Representative Unit Cell model

The RUC model proposed in chapter 4 encompasses a concrete geometric spec-

ification, in contrast to the abstract Representative Elementary Volume (REV)
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model. The geometric specification allows the development of a microscale flow

model and avoids the need to parameterize the closure relations as is done in

the traditional volume averaging procedure. Both the REV and RUC are an

abstraction of a real porous medium. The flow model used in the RUC is

based on a Poiseuille assumption and simplifies the description of the flow.

It uses a resistance factor and a scaling proposed by Weislogel and Lichter

(1998). Although the geometric specification of the RUC is relative simple,

apparently the wedge like corner geometry captures the most important geom-

etry and topology related aspects of a real porous medium (sand). With this,

unsaturated flow can be modeled, needing only the porosity and the air entry

value as porous medium parameters. The microscopic geometric parameters

a, b and j influence the flow dynamics and there is no direct way to determine

them a priori. They could be used as tuning parameters, together with the

constant resistance factor Fv. As shown in chapter 6, the exact choice of a, b

and j influences the flow dynamics, but the total outflow predicted is relative

insensitive to their precise value.

7.1.4 Constitutive relations

In the Buckingham-Darcy (BD) equation two constitutive relations are needed

to describe the relations between relative hydraulic conductivity and liquid

saturation kr(S) or volume average pressure kr(〈pl〉l), and volume average

pressure and saturation S(〈pl〉l). Equations (5.45) or (6.8) have no direct ana-

log to kr(S) or kr(〈pl〉l). In effect during the averaging of the pressure term

the two-dimensional Young-Laplace equation (eq. 4.23) served as a constitu-

tive relation. Together with the averaging of the viscous term an analog to

the kr(〈pl〉l) relation was proposed in chapter 6 (eq. 6.15). The use of the

two-dimensional Young-Laplace equation is a simplification. The constitutive

relation S(〈pl〉l) was implicitly accounted for through the use of the Young-

Laplace equation for liquid area in a corner. This proposed relation is only

valid for unsaturated flow, and the switching to saturated flow is discontinu-

ous. When solving the BD equation together with the volume averaged mass

balance a related difficulty arises. In this case the constitutive relation S(〈pl〉l)
needs to be inverted to 〈pl〉l(S). This relation is not unique for S = 1, and dif-

ficulties arise in determining exactly the location of the saturated-unsaturated

interface in a porous medium. The relation between liquid saturation and the

boundary pressures (eq. (4.49)) could be seen as a constitutive relation. How-

ever it is based on the microscopic flow model of section 4.4.2 and as such a

direct result of averaging.
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7.2 Recommendations and Possible Extensions

The first recommendation is to test the averaged momentum equations with

other data sets. In chapter 6 simulations were done for one experiment, and

reasonable agreement between simulations and measured values was obtained.

Additional tests could show whether the developed model is capable of simu-

lating unsaturated flow in a wide range of sand-like porous media.

In the averaging process from microscale to macroscale several simplifications

were made. A number of these simplifications are addressed here and some

new possible extensions are suggested:

1. The relation between corner liquid area Ac and averaged pressure p0,1
is based on the Young-Laplace equation. This simple relation could be

replaced by a more realistic parameterization, either based on a rela-

tion accounting for more physics through introducing adhesive forces

and surface roughness, or a more realistic pore geometry. This exten-

sion is relatively easy to implement in the current flow model, because it

would modify only the pressure term and the microscale flow model.

2. At low saturations, vapor diffusion plays an important role in the move-

ment of the liquid phase through evaporation and condensation. In order

to take this effect into account, an equation for the movement of the liq-

uid vapor should be introduced and coupled to the momentum and mass

balance equations. This extension implies that the averaging needs to

be redone, as no transport across the gas-liquid interface was assumed.

Additionally momentum and mass balance equations would arise for the

vapor and gas phase, making the total transport model much more com-

plicated.

3. The Representative Unit Cell (RUC) model is an abstraction of reality.

It appears that the RUC model covers the most important geometry

related aspects of a simple porous medium (sand). Extensions could

include taking into account channel curvature in the flow model. A

non-planar corner geometry could improve the modeling of the corner

liquid area and pressure relation. In principle the RUC model could

be extended much more and made more complicated. But this would

contradict the goal of the RUC model in using it as a simple model for

a porous medium.

4. Through the volume averaging procedure, dynamic terms were intro-

duced in the mass and momentum balance equations. All spatial vari-
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ables are spatially averaged, but the time dependent terms depend on

a ”microscopic”time scale. Temporal averaging of the equations could

result in an improved modeling of the dynamic terms and a temporal

scale better fitting the spatial scale (Ishii, 1975). This process of com-

bining temporal and spatial averaging gives rise to new closure problems

and raises the issue of the commutativity of the two different averaging

processes (Pedras and de Lemos, 2000). An extension in this direction

would involve substantial theoretical work.

5. It would be interesting to directly compare the RUC model to pore net-

work modeling simulations. Moreover, the corner flow model developed

in chapter 4 could be used in advanced pore network models with an-

gular pores for a more realistic porous medium representation than the

circular tube models commonly employed in pore network modeling.

7.3 Conclusions

− Through the use of volume averaging and direct integration macroscopic

momentum and mass balance equations were derived from the micro-

scopic momentum and mass balance equations. As a result a novel form

of the macroscopic pressure term is proposed.

− The apparent driving force for liquid flow in unsaturated porous media

is 1
p1
− 1

p0
. This is a result of the nonlinear coupling between capillary

forces and liquid pressure gradient.

− A geometric representation of a porous medium (sand) called a Repre-

sentative Unit Cell model was developed and used in the closure problem

generated by the volume averaging. The simple RUC model appears to

be capable of modeling the important characteristics of a porous medium

for unsaturated flow.

− In this work two dynamic terms were derived by simplifications of the

flow dynamics in an RUC. They remain to be tested quantitatively and

still have considerable uncertainty concerning their exact form and/or

magnitude.

− Comparison of the newly proposed equations with the Buckingham-

Darcy equation shows that, using reasonable assumptions, the newly
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proposed equations can be written in a form similar to the Buckingham-

Darcy equation. However the newly proposed equations are nonlocal and

have an apparent nonlinear driving force.

− A numerical solution of the newly proposed equations was compared to

an outflow experiment and satisfactory agreement between experiment

and calculations was observed.



A Traditional Form of the Volume

Averaged Pressure Term

In this appendix the traditional form of the volume averaged pressure term

(Whitaker, 1986a,b; Ma and Ruth, 1993) is presented. As stated in chapters

3 and 5, the liquid pressure is averaged over the liquid phase only, as the

macroscopic pressure measurement is an intrinsic liquid phase measurement.

The derivation of Ma and Ruth (1993) is followed, adjusted for the two-phase

case:

〈∇pl〉l =
1

Vl

∫

Vl

∇pldV (A.1)

= ∇〈pl〉l +
1

Vl

∫

Sslg

ν ṗl dS (A.2)

= ∇〈pl〉l +
1

εnlV0

∫

Sslg

νpl dS +
〈pl〉l
εnl
∇(εnl) (A.3)

whereby the integral containing ṗl was rewritten using equation 2.2 in Ma and

Ruth (1993). The integral term in the above equation is normally assumed to

be small and dropped:

= ∇〈pl〉l +
〈pl〉l
εnl
∇(εnl) (A.4)

The last term in the above equation is a Brinkman (1949, 1947) like term,

and required to be small in order to satisfy the volume averaging length scale

constraints. It is proportional to 〈pl〉l, and this requires an absolute definition

of pressure. A relative definition of liquid pressure, as adopted in chapter

2 of this dissertation is not possible. If this was done, it would depend on
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the chosen pressure reference level. Dropping the term and using the volume

averaging rule (Crapiste et al., 1986) 〈Ψ〉 = εnl〈Ψ〉i:

〈∇pl〉 = εnl∇〈pl〉l (A.5)

Equation (A.5) is used in most volume averaging descriptions of unsaturated

flow.



Summary

This dissertation describes modeling of unsaturated flow in porous media. The

fluid phases considered are a wetting liquid and a gas. In practice one can think

of a sandy soil, partially saturated with water, partially with air.

Starting from the description of fluid flow through individual pores, an equa-

tion for flow of a liquid in a porous medium in the presence of a gas is derived.

This flow is directly influenced by phase interfaces, e.g. solid-liquid or gas-

liquid. By explicitly including these pore scale phenomena in a continuum

description of fluid transport in porous media, a consistent theoretical descrip-

tion of fluid flow on the macroscale is obtained.

Chapter 2 provides an overview and gives a historical perspective of the study

of flow in porous media. Single-phase and two-phase flow at the pore scale are

described, basic equations introduced, and concepts of the different flow mech-

anisms explained. Thereafter different methods for upscaling to a continuum

description of flow in porous media are introduced and the basics of volume

averaging explained.

Chapter 3 describes the development of upscaled unsaturated flow equations

in porous media. The main assumptions are listed and the starting equations

on the pore scale and the boundary and initial conditions are stated. These

equations are volume averaged and the closure problem is developed. The ap-

proach taken here is based on the closure scheme developed by du Plessis and

Masliyah (1988), augmented with additional boundary conditions which are

introduced due to fluid-fluid interfaces.

Chapter 4 describes the development of a Representative Unit Cell (RUC)

model for the closure of the volume averaged equations derived in chapter 3.

In chapter 5 the volume averaged equations derived in chapter 3 are com-

bined with the results from chapter 4. The closure problem in these equations

is solved and microscopic quantities are replaced by macroscopic quantities.

Boundary and initial conditions are stated and the equations are formulated

to be compatible with these conditions.

Chapter 6 analyzes and compares the equations derived in chapter 5 with the
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traditional Buckingham-Darcy (BD) type equations and the dynamic capillary

pressure model used by Hassanizadeh et al. (2002). Furthermore a numerical

comparison is made with an experiment by Stauffer (1977).

In chapter 7 a discussion of the upscaled equations is given. Together with

the comparison in chapter 6, strengths and weaknesses of the above equations

are discussed. First the general properties and the averaged pressure term are

discussed, followed by a discussion of the dynamic terms. Then the drawbacks

are explained and recommendations for possible extensions are given.

The main recommendations are: a) To test the averaged momentum equations

with other data sets; b) To improve the relation between corner liquid area

and averaged pressure; c) To include vapor diffusion at low saturations; d) To

improve the Representative Unit Cell (RUC) model; e) To include temporal

averaging in the upscaling procedure; f) To directly compare the RUC model

to pore network modeling simulations.

The main results are: a) Macroscopic momentum and mass balance equations

were derived from the microscopic momentum and mass balance equations;

b) The apparent driving force for liquid flow in unsaturated porous media is
1
p1
− 1

p0
. This is a result of the nonlinear coupling between capillary forces and

liquid pressure gradient; c) A geometric representation of a porous medium

(sand) called a Representative Unit Cell model was developed and used in the

closure problem generated by the volume averaging. The simple RUC model

appears to be capable of modeling the important characteristics of a porous

medium for unsaturated flow; d) Two dynamic terms were derived by simpli-

fications of the flow dynamics in an RUC. They remain to be tested quantita-

tively; e) Comparison of the newly proposed equations with the Buckingham-

Darcy equation shows that, using reasonable assumptions, the newly proposed

equations can be written in a form similar to the Buckingham-Darcy equation.

However the newly proposed equations are nonlocal and have an apparent

nonlinear driving force; f) Comparison of the newly proposed equations to

an outflow experiment shows satisfactory agreement between experiment and

calculations.



Samenvatting

Dit proefschrift beschrijft het modelleren van onverzadigde stroming in po-

reuze media. De beschreven vloeistoffen zijn een benattende vloeistof en een

gas. In de praktijk kan men denken aan zand, gedeeltelijk verzadigd met wa-

ter, gedeeltelijk verzadigd met lucht.

Uitgaande van de beschrijving van vloeistofstroming door individuele poriën,

wordt een vergelijking voor de stroming van een vloeistof in de aanwezigheid

van een gas afgeleid. Deze stroming wordt mede bepaald door grensvlakken,

bijvoorbeeld vast-vloeibaar of gas-vloeibaar. Door expliciet deze poriëschaal

verschijnselen in een continuüm beschrijving van vloeistof stroming door po-

reuze media mee te nemen, wordt een consistente theoretische beschrijving op

de macroschaal verkregen.

Hoofdstuk 2 geeft een overzicht en een korte geschiedenis van het onderzoek

naar stroming in poreuze media. Een- en twee-fase stroming op poriëschaal

wordt beschreven, de basis vergelijkingen worden gëıntroduceerd, en de con-

cepten van de verschillende stromingsmechanismen worden verklaard. Daarna

worden verschillende methodes voor het opschalen naar een continuüm be-

schrijving van vloeistof stroming in poreuze media beschreven evenals de ba-

sismethode van volume middeling.

Hoofdstuk 3 beschrijft de ontwikkeling van nieuwe opgeschaalde onverzadigde

stromingsvergelijkingen in poreuze media. De hoofdaannames worden beschre-

ven en de initiële en randvoorwaarden worden vastgesteld. Deze nieuwe verge-

lijkingen worden volume gemiddeld en het sluitingsprobleem wordt ontwikkeld.

De benadering die hier gekozen is, is gebaseerd op het sluitingsschema zoals

ontwikkeld door du Plessis and Masliyah (1988), aangevuld met additionele

randvoorwaarden door de aanwezigheid van vloeistof-vloeistof grensvlakken.

Hoofdstuk 4 beschrijft de ontwikkeling van een “Representative Unit Cell

(RUC)” model voor de sluiting van de volume gemiddelde vergelijkingen, af-

geleid in hoofdstuk 3.

In hoofdstuk 5 worden de volume gemiddelde vergelijkingen van hoofdstuk

3 samengevoegd met de resultaten van hoofdstuk 4. Het sluitingsprobleem
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in deze vergelijkingen wordt opgelost en microscopische grootheden worden

vervangen door macroscopische grootheden. Rand- en initiële voorwaarden

worden opgesteld, en de vergelijkingen worden compatibel met deze geformu-

leerd.

Hoofdstuk 6 analyseert en vergelijkt de vergelijkingen afgeleid in hoofdstuk 5

met de traditionele Buckingham-Darcy (BD) type vergelijkingen en het dyna-

mische capillaire druk model zoals gebruikt door Hassanizadeh et al. (2002).

Verder wordt een numerieke oplossing van de vergelijkingen vergeleken met

een experiment van Stauffer (1977).

In hoofdstuk 7 wordt een discussie van de opgeschaalde vergelijkingen gegeven.

Samen met de uitkomsten van hoofdstuk 6, worden sterkte en zwakte punten

van de bovengenoemde vergelijkingen besproken. Eerst worden de algemene

eigenschappen en de gemiddelde drukterm besproken, gevolgd door een discus-

sie van de dynamische termen. Daarna worden mogelijke nadelen verklaard en

aanbevelingen voor mogelijke uitbreidingen gegeven.

De belangrijkste aanbevelingen zijn: a) Het testen van de gemiddelde mo-

mentum vergelijkingen met andere data sets; b) Het verbeteren van de relatie

tussen corner liquid area en gemiddelde druk; c) Het meenemen van waterdamp

diffusie bij lage verzadigingen; d) Het verbeteren van het “Representative Unit

Cell” (RUC) model; e) Het toevoegen van tijdmiddeling in de opschalings-

procedure; f) Het direct vergelijken van het RUC model met porië netwerk

modellen.

De belangrijkste resultaten zijn: a) Macroscopische momentum en massa ba-

lans vergelijkingen zijn afgeleid van microscopische momentum en massa balans

vergelijkingen; b) De schijnbaar veroorzakende kracht for vloeistof stroming in

onverzadigde poreuze media is 1
p1
− 1

p0
. Dit is het gevolg van de niet-lineaire

koppeling tussen capilaire krachten en de drukgradient in de vloeistof; c) Een

geometrische representatie van een poreus medium (zand), genoemd “Repre-

sentative Unit Cell” model is ontwikkeld en gebruikt in het sluitingsprobleem

bij de volume middeling. Het eenvoudige RUC model lijkt goed in staat de

belangrijke eigenschappen van een poreus medium voor onverzadigde stroming

te modelleren; d) Twee dynamische termen zijn afgeleid door vereenvoudigin-

gen van de stromingsdynamica in een RUC. Deze moeten nog kwantitatief

getest worden; e) Een vergelijking van de nieuw voorgestelde vergelijkingen

met de Buckingham-Darcy vergelijking laat zien, dat gebruik makende van

redelijke aannames, de nieuw voorgestelde vergelijkingen in een vorm kunnen

worden geschreven, die lijkt op de Buckingham-Darcy vergelijking. Echter, de

nieuw voorgestelde vergelijkingen zijn niet lokaal en hebben een schijnbaar niet

lineaire veroorzakende kracht; f) Vergelijking van de nieuw voorgestelde ver-

gelijkingen met een uitstroom experiment laat redelijke overeenkomst tussen
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experiment en berekeningen zien.
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